AD-A193 955 AN EXPERT SYSTEM FOR THE DIAGNOSIS OF VEMICLE /4
‘ s SEEE& Dggsgl?l NAVAL POSTGRADUATE SCHOOL MONTEREY CA

DU ‘ul

—— B L T R TR RN R AR LA R R R
RO SIS O N AR SR WK

'

PR Y

Fy,

8 Nl N -
T o= =
W EF

t F PRI

4

i

l.l
———
S ———
——
——

.

e 5 2 Ao XENNNC g R Rl]

L4

1.25

!

TNPY RESNMT Y TEST CHART

NATIONAL BUREAY OF STANDARDS - 196% - *

. 0
Ea e e e -

» - e

PR IRy

S O R R T O N N I Y IR T IO t abp &% ot Aty atata e’ 8. <40, 7a¥ 29,5 el Yak int Fab 018 te Cp e — —

o OIIC_EILE. copy @
NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

AD-A193 955

-' C)Q H

THESIS

: AN EXPERT SYSTEM FOR THE DIAGHNOSIS OF
ay VEXICLE MALFUNCTICLS

» by

Can Selek

December 1987

o Thesis Adwvisor Meil C. Rowe

”) Approved for public release; distribution is unlimited.

SRR N P U W UL MUY U

UNCLASSTFIED
JRITY C_ASSIF.CATON OF T=:S PAGE
+EPORT DOCUMENTATION PAGE

Ta REPORT SECLRITY CLASSIFICAT.ON 0 RESTRICTIVE MARKINGS
! Unclassified :
3 2a. SECLRITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION 'AVAILABILITY OF REPORT)
¢ ~Approved for public release;
20. DECLASSIF.CATION : DOWNGRADING SCREDULE dlstrlbutlon is unlmted.

4 PERFORMING ORGAN:ZATION REPORT NUMBER(S; 5 MONITORING ORGANIZATION REPORT NUMBER(S) \

60 OFF CE SYMBO.) 7a NAME OF MONITORING ORGANIZAT.ON
1 (1f applicable)
. Naval Postgraduate School 52 Naval Postgraduate School

88 NAME OF PERFORMING ORGANIZATION

7o ADDRESS (City, State, and ZiP Code)

6¢. ADDRESS (City, State, and ZIP Code)

Monterey California 93943-5000 Monterey California 93943-5000

9 PROCUREMENT ANSTRUMENT :DENT <.CATION NUMBER

8o OFF CZ SYMBG.
(If applicadbie)

NANME OF FUNDING SPONSORING
ORGANIZAT'ON

8o

8¢. ADDRESS (City, Stare. and 21P Code) *) SOURCE OF FUNDAG *,. A7ais.

I\ PAIOGRAM PROLEC™ TASK NORS UNIT
W ZILEMENT NO NO i ACCESSION NO

' TiTLE (nclude Security Ciassification)

An Expert System for the Diagnosis of vehicle Malfunctions

*2 PERSONAL AUTHOR(S)
Can Selek

13a TYP: OF REPORT . *3p TS COVERED '3 DATE OF REPORT (Year Mon:r Oay)
Master's Thesis 230N o) December 13987

16 SUPPLEMENTARY NOTATION

&

i o347 CODES "8 5.8.2C7 TERN'S (Contrnue On reverse if necessary ang gentity Dy DIOCx numper)
R) GROU® SLB-GROLP Expert System
Diagnosis, Prolog

'3 ABSTRACT (Continue on reverse if necessary and :gentify by biock number)

We examine the feasibility c¢f an expert system <o assist in the
mos1s of vehicle malfunctions. A passive expert planner is preposed
uzilizes multiple demain-dependent kKnowledge base:. The system 1s
mented on a personnel computer, and is based on general-purpose car
ir manuals. An efford is made to adequately deiine emerdenciles.

immowledge base and inference procedure feor such & system are also
sented. |- ‘

a

IS O AN T
| O 9]

[I SRS BB)
1]

M
'3

M W

T A ot

3

20 D STRIBUTION. AVAILABILITY OF ABSTRACT 2* ABSTRACT SECURITY (LA55F (AT.ON
[uncLassiFied unuMviTED [same as rer O o7 ¢ usess Unclassified
1) Zca NAME OF RESPOMNSIBLE INDWIDLAL 220 TELEPHONE (incluge Ares Cogel | 2lc OFF CE SYVBCL
R el Coue (408) BuE 2462 o oge 5o°0
2\ DD FORM 1473, 84 a3 83 A7R 20 t 0" May D@ usec LN exnausted SEC - J_AsSECATON CF "w< 2A13

L) Al otner eqiiONS are posoO'ete 2 U S Government Prating Oitice 1986—608.243

QT o R P A A AP T SRR o

Bl R

BT N (T

ORI R AU AT A I RO RO RO RO OO RN XK Y At 0" 0 *Bu gV 890 0" 87 990 ¥ A a0 g 04" gltps e 2 g OO OO ™ O NN PN

Approved for public release; distribution is unlimited

q An Expert System

o for the Diagnosis of Vehicle Malfunctions
by

,4" - .

4 o Mufit Can Selek

% ' Lieutenant Junior Grade, Turkish Navy

w - B.S.t Turkish Naval Academy, 1981

- i

Submitted in partial fulfillment of the
requirements for the degree of

it
A

MASTER OF SCIENCE IN COMPUTER SCIENCE
¥
R from the {
W ' NAVAL POSTGRADUATE SCHOOL ‘ '

. . ' ’ . December 1987 :
o
.
: yA
;, Author: (f//’—;;w ——
Mufit Can Selek

.
1 -
¥ .
& Approved by: MC?.

Neil C,Rowe, Thesis Advisor

Koo —

Yuh- jeng Lee, Second. Reader

L

i\
|

(-

Lum, Chairman,
Com er Science

PP O Taf Nl e

- o o 4

James M. Ffremg cting Dean,

PoligZy Scienge ;

[\
A RSO

[y
..

A N T UL ST I 3 TN R Y PO U UK TR RICA XY RXAXRE SRS p v gav gap da¢ AST d5caita” 47 Rtat ata et SR 200" SO0 he Ltk arte- vy T

L. 8 - W g

* 8

W .

ﬂ‘ ABSTRACT

::;' .

(%

*§

Bt . Py m e

N We examine the feasibility of an expert system to
)

L ®

o assist in the diagnosis of vehicle malfunctions. A passive
o

.:f.‘ expert planner is proposed that utilizes multiple domain-
L . .

¢$ dependent knowledge bases. The system is implemented on a
P

R personal computer, and 1is based on general-purpose car
ﬁ: repair manuals. An effort is made to quantify the amount of
l|~

)
,?1 information processing necessary to adequately define the
B2

' problem. The knowledge base and inference procedures for
"y

oy such a system are also presented.

N

X

-

_.\ .

2
Be Y

o]
.,:

i

" ny

N‘

‘.!

>
:

“

0

L

~

oo

d . Accesslion For

- [o

) | NTIS GRA&I o
; I DTIC TAS (]
; I Unaunsunced 0
""_ ‘ Juatidivation 4
Lo P

() ' ‘ .

vl PRy

\ . Distribution/
= | Avatlabiltity Codes
o 3 777 iAvall and/or
°:' %Dlat ' Special

:': '

w \

L |

Ay d V Y et CRTITN '.q.' " \"\' CRCS "." ' ." . 15-‘ -‘v .‘-\- I\' n® \"‘v STt e '.1.._. : ‘.'* .-\.‘.'-_-\ {

R - - R - N 0 N (TRPC PR PO P v R
R R T R T T O T TP U TN L AR CX WL O WU G WA A LW TR WU N UWUMLS U U U L 1013 4 AR AT A R

:';)
h!i'
it
.
8
it TABLE OF CONTENTS
N
X
10
Lg I. INTRODUCTION .o uo oo e, 6
i’ (] Y
" A. BACKGROUND . ..o oo 6
gg B. OVERVIEW . .\ oo 7
< II. BACKGROUNDt 10
B
b A. EXPERT SYSTEM CONCEPTSo 10
W B. SUMMARY OF CURRENT KNOWLEDGE IN DIAGNOSIS 15
ﬁ
Q III. DESIGN AND IMPLEMENTATIONo\ . 22
)
Q'.
B A. PROGRAMMING LANGUAGE . ..o oo 22
{4 B. APPROACH\ttt e 23
"y
3 C. KNOWLEDGE BASEo oo 27
f D. INFERENCE PROCEDURE 28
;f E. USER INTERFACE oo 29
o F. MODULES . .. oo oo, 30
g IV. CONCLUSIONS AND RECOMMENDATIONS 32
5 A. CONCLUSIONS . oo oo, 32
N B. RECOMMENDATIONS 32
; APPENDIX A: SOURCE CODEot 33
{ t
i APPENDIX B: SAMPLE USER SESSIONS 63]
: LIST OF REFERENCES oo, 73
BIBLIOGRAPHY oo oo e 74 ‘
0 INITIAL DISTRIBUTION LIST ..o, 75 3
)
K
.
0

KXCEEN]T
<N
=~ A NP

' 3
1.— ~
2 ! "

~
’\ . . . P T - iV - PN 4 W T W W o T ¥y ™ (W QWY ™ Q¥ w, LT
.2 S E%) W W e WP W ™ T A o ¢ LR
"“'.. v 8, 08, 00,070,0 0,0 R84 B0 V8,50 50 L Ca OG0 Tt Lalia Al alalis ’ D W P T VR ARG TS »

ARIAIUATK

N

(R A RAANANKI TR Y

3]

V]

w

RO O D o g N

TR R W AN RN XMW TR &'s, *8a2 8.0 40" 48 ™ XV R ‘4 a®) 2t ath 2\ re 2R R 2t o

LIST OF FIGURES

Sample IF ...THEN ... INFERENCE RULE 12

Model-System Difference 17

Index to Problems 19

Sample Section e e 2
5

NN A AR il S, J'.r LA, T n 0 T AT \'-.‘s.'- NV

RO T AR LR FR AR RO A, 00 e 0s" A 00 VD a0 'S 200 8" D A AV 0 LA L u b ' Bt VAT Y, LN WA SN I . N

I. IN CTION

KX A. BACKGROUND

The goal of artificial intelligence (AI) 1is to develop
computer programs that could in some sense think; that is,
) solve problems in a way that would be considered intelligent
if done by a human.

Artificial intelligence imitates both the basic problem !
) solving and learning process of human beings. "In the

sixties, AI scientists tried to simulate the complicated

é process of thinking by finding general metl.ods for solving |
i broad classes of problems; they used these methods in)

general -purpose programs. However, despite some interesting

oo progress, this strategy produced no breakthroughs.
Developing general-purpose programs was too difficult and "]
ultimately fruitless.” [Ref. 1]

b "It wasn't until the late 1970s that Al scientists,

P R A

’ began to realize something quite important: the problem-
solving power of a program comes from knowledge it

‘: possesses, not Jjust from the formalisms and inference

o s a . -

, schemes it employs.” [Ref. 1] This realization led to the
development of special-purpose computer programs, systems
that were expert in some narrow problem area. These \

programs were called expert systems. This knowledge can

r

AR AT AT BPUWUR PO VWS P R R S U R T WU Y L A WO sy o pas da* a2 200" 200" . g . Yy

R often be accessed much faster and with greater accuracy in a
computer than from the human expert.

Within the last few years, research in the field of
o . artificial intelligence has grown significantly. Early

pioneers of expert systems, such as MYCIN [Ref. 2] in the

1\ area of medical diagnosis, have proven successful enough to E

L: motivate the investigation of similar expert systems in]

: others fields of study. One such product related to vehicle

! diagnosis, besides equipment maintenance expert systems in

§‘ commercial and industrial environments, has recently been f

; put into service by ANALYTICS; it is called AIJPA :

g (Artificial Intelligence Job Performance Aid).

()

4

o y
B. OVERVIEW

: . While vehicle repairs can be made by many people,

i§ accurate troubleshooting is a rare skill for the amateur and :

’ the professional alike. For that reason, a shortage of ?

i technical experts could have a drastic effect on the i

:: efficiency of equipment malfunction diagnosis. The E

L personnel performing this task must possess both a good

r? technical background and a great deal of training and)
experience on the particular equipment being repaired.

5 Therefore, an expert system applied to vehicle diagnosis

iﬁ ' could improve job performance, with less maintenance cost. I

‘3 It will also help solve the 1lack of well-trained

ﬁ professionals.

R

b 7 :

. - - . 5O 2 6l 4l -
Fh PR L LR UM LY VAN TR W TR N NPT LIS WO PO PG O NS Wa T WL Xy) 3 A S ATA N S bl Sl Sl b SACANGY
§

!
s
1t
ﬁ::;
gy Thus, the purpose of this thesis is to assess the
‘1
) feasibility of augmenting the mechanic with a computer in
o
:f the maintenance of vehicle. Based on current diagnostic
,'I'.
{ﬁ expert systems such as MYCIN [Ref. 2], our expert diagnosis
ity
' system will contain a knowledge base obtained from technical
'q manuals and expert mechanics. It should be possible for
'h‘ 3 0 - »
[less-qualified mechanics to quickly and accurately assess
“y
) vehicle malfunctions through interaction with the expert
hg system.
'Y
'$‘ The particular objectives are as follows:
‘,‘
- 1. Quantify, through the implementation, the amount of
8
:?_ information processing necessary to sufficiently diagnose
¢
2, the vehicle malfunctions.
N
1}
K 2. Evaluate the problems encountered in implementation
P
ﬁ! when a rule-based expert system is chosen as a basis.
b
)
y 3. As far as the effectiveness of programming languages
oy
" is concerned, evaluate the efficiency and ease of use of
s PROLOG throughout the implementation.
;q The implementation of a small-scale expert diagnosis
)
b system demonstrates the feasibility of a larger-scale
v
; system, This implementation involves several sections of
-J
T the engine system of the vehicle. The design is implemented
)
-
3 in Arity Prolog [Ref. 3] on an IBM XT computer.
1! Three assumptions have been made to simplify the
[
‘: implementation.
|
&
‘l
.l
5
#
"
v
\
\

L L4
AT AN

Y

‘,a\.-}f.')#-

G 3

)
s &Vs.

1. There 1is no partial certainty assigned to the

existence of any individual malfunctions.

2. All indications presented to the mechanic by test

equipment are correct.

3. There exists at least one malfunction.

Y e Y e ey e e e e e e e D

IT. BACKGROUND

EXPERT SYSTEM CONCEPTS
An expert system is an extensive body of knowledge

about a specific problem domain. Characteristically, this

knowledge incorporates facts and rules from human experts

and written documentation, and is made available to users,
apprlying some inference mechanism which governs those rules,
to provide solutions to the problems brought by its users.
1. F o) t Syst
As Forsyth [Ref. 4] 1lists some of the distinctive
features of expert systems:
a. An expert system is limited to a specific domain

of expertise.

It can reason with uncertain data.

‘;'v Y% Al. q

P

It can explain its reasoning path 1in a

b Y B
Pl a

comprehensive way.

-f.:i‘ |

The facts and inference mechanism are clearly

v?‘)

separated. (Knowledge is not encapsulated 1into

TN

the deductive procedures.)

> &

It is designed to grow incrementally.

Y

f. It is typically rule-based.
Buj i S m

"The main players in the expert system environment

-
W e

are the expert system, the domain expert, the knowledge

-

10

- . g -
NS

*\ ".)‘\ 3% % -‘-’.’- .Jl -)N‘-._'-.’---"r'-.-)q’-’-',{- .‘r- o -'..l., RS d

',

\‘vlil'-“\"“'l' RYA IS et DA w0 il Vet Vel ad Ve gea-poa- R AR RaN AR ¥ gan s’ e ke ot : T8 8 0an 0.0 0. Dok a0k tah ¢ T

.h engineer, the expert-system-building tool, and the end user
3 '

#,

[Ref. 1]. Their basic roles and their relationship tc each

' \]

:Q other are summarized below.

"

‘Q a. The Domaj xpert: A person who, through years
L)

.i

- of training and experience, has become extremely
[N Y

:“ proficient at problem solving 1in a particular

domain.
'é- R .
b. T owled ngi : A person who, witn a

X

ﬁﬂ background in computer science, knows how to
3)

) . .

?J build expert systems. The Kknowledge engineer
!' 1]

4 interviews the domain expert, organizes the
7

. knowledge, and decides how it should be represen-
‘-l

&, .
.-? ted in the expert system.

W

) c. T xpert- -Buildj : Both the pro-
]

b . gramming language and support environment used by
»l

‘§ the knowledge engineer or programmers to build
) the expert system.

i: d. End User: The person for whom the expert system
{; was developed.

2 3. Expert System Architecture

o a. Knowledge Organization

7

kﬁ Expert systems need to be organized in an orderly
$-f'

¢ manner to avoid confussion. In general, the
'y

:? knowledge 1is divided into three categories.
)

o

- (Ref. 4]

P

>

B \“

\f

(Y 11

LI W RN

'd" 'J'III-PJ'-(\,‘-!‘-:'I-(\-PJ‘J'-"J'J'-"J'J.J'.rl-

- o v A ™ T
\‘-'\\"\'\"\\\.‘J\f'. {'- - w

\\. \\\\--\-.‘;-.'\ SN

-
(\-' Y

aa- ~afe- 0 0 Aataral"aba®al vak ¢ L
£l 2 - L ‘3.8 LY N * N 'A 41 \ .A . 'I “ 3 " - . .- e h - - g 9 W - " ~ -

$! 1. Factual Knowledge: This knowledge represents
a particular case and 1is usually gathered

s% through a dialogue with the user.

1y 2. Procedural Rule Knowledge: This knowledge 1is

usually collected in advance from the domain

It specialist and forms the core of a knowledge
©

v base. This also forms the reasoning part of
3,

v the system to infer conclusions.

I“'

:f 3. Control Knowledge: The system needs to have
o
A a variety of control strategies available to
N

: it so that alternatives can be tried out at
L. .

- run time.

!
o) b. Procedural Knowledge
-
3"'

The procedural knowledge most commonly used in
current expert systems is a rule-based knowledge
e representation in the form of IF <condition> THEN

<action> statements, as shown in Figure 2.1.

. IF

& 1. STARTER TURNS BUT NOT THE ENGINE, and
*E 2. NO HIGH RESISTANCE TO MOVING ENGINE
'

- THEN

= CONCLUDE THAT THERE IS A MALFUNCTION IN
- STARTER UNIT

34

- Figure 2.1 Sample IF ...THEN ... INFERENCE RULE

X

N

o 12

A A LG

T

(a

-
"
Ay

'.‘.'h.;':A..':l.." e T T, A, P, G AL

When the current problem situation satisfies or
matches the IF part of a rule, the action specified by the
THEN part of the rule is performed. This matching of rule
IF portions to the facts can produce what are called rule
firings or inference chains.

c. Control Knowledge

The inference engine reasons and makes inferences
based upon the application of rules and facts
contained in the knowledge base. It
accomplishes this through a control structure.
There are many control structures implemented in
current rule-based expert systems.

One is known as backward chaining or
goal-directed reasoning. This structure begins
with the selection of a specific goal and then
searches the rules to find those whose concequent
actions can achieve that gcal. Backward chaining
is often a good control structure when there are
more facts than final conclusions (goals). [Ref.
5]

Often, rule-based systems work from just a few
facts but are capable of reaching many possible
conclusions [Ref. 5]. For that reason, it makes
more sense to match the rules to the state or
the condition of facts and continually apply

those rules to new states until the desired goal

13

T T AT A A AN Tate¥atater o AR AT T AT R TN

SR A AT T AN

IR N SRR S RNt e nchata

St A Al Al VLl L

is attained. This control structure is known as

forward chaining or data-directed computation.
Different control structure ideas can be combined
in hybrid control structures. “Hybrids of
forward and backward chaining, compromising on
the advantages and disadvantages of both, are
often used. The most common is the rule-cycle-
hybrid control structure because it is easy to
implement. With rule-cycle-hybrid, rules are
tried in order as with backward chaining, but
each rule 1is wused in a forward-chaining way to
assert new facts.” [Ref. 5]

Factual Knowledge

A knowledge base contains facts, assertions, and
rules. Some of the facts are short-term informa-
tion that can change rapidly during the course of
a consultation. Facts in a data base are normal-
ly passive; they are either there or not there.

A knowledge base, on the other hand, actively

tries to fill in the missing information
[Ref. 4].
User Interface

Whatever the style of expert systems, they
assume that information is provided manually

through a question asking/answering dialogue, or

automatically by means of senscors or other

14

3
‘
]
"

" W et W

L W P D atdmt 271 2% 282" 2’2 20 2% 8% 2% 2% '8 UV MUMWC WU WU WU W R T O O RN Ny A 0 8% Bha Rt 80y AUy RUL 28, RS

N
,; devices. The interface 1is that part of the
it
‘.' . . .
- expert system which controls communication with
i ‘ the user.
A
. q
N ,
" B. SUMMARY OF CURRENT KNOWLEDGE IN DIAGNOSIS
A . . R
1. Theory of Djiagnosis

:i "In the theory and design of diagnostic reasoning
b0
R systems, there appear to be two quite different approaches
f’ in the literature. In the first approach, often referred to
"
g as diagnosis from first principles, one begins with a
o
& description of some system with an observation of the
“? system’s behavior. If this observation conflicts with the s
f way the system is meant to behave, one is confronted with a
! diagnostic problem, namely, to determine +those system
§: components which, when assumed to be functioning abnormally,
w.: ’
v will explain the discrepancy between the observed and
",'xi
* correct system behavior. For solving +this diagnostic
jg problem from first principles, the only available
Al “)
@Y information is the system description, i.e., its design or
YA
: structure, together with the observation of the system
?\ behavior. In particular, no heuristic information about
:N system failures is available, for example, of the kind when
)
4 the system exhibits such and such aberrant behavior, then in
f& ’ 90 percent of these cases, such and such components have

failed. " {Ref. 6] An example is electronic equipment ‘
D ®
2 troubleshooting.
I.')
v)
" 15 @
o
" g
&

T VL L P AV RN LS NI P ORI

~y e

[} ¢, 'r r\- — -c ,-ﬁ. - --" 5-5- - \N ~~\> - N \ e e . '-}'\f\"-‘-

R RN AN TP w) TR RN “Oab Aaf. *, 8 sl ‘af 9 %) d &, Sl *ab o taf ol .‘n n.u -‘. 1y u..- 'i' -..

"Under the second approach to diagnostic reasoning,
which might be described as the experiential approach,
heuristic information plays a dominant role. The
corresponding diagnostic reasoning systems attempt to codify
the rules of thumb, statistical intuitions, and past
experience of human diagnosticians considered experts in
some particular task domain. The structure or design of the
corresponding real-world system being diagnosed 1is only
weakly represented, if at all. Successful diagnosis stem
from the codified experience of the human expert being
modeled, rather than from what is often referred to as deep
knowledge of +the system being diagnosed."” [Ref. 6] A
notable example is the MYCIN system.

2. The Behavior of the Diagnostic Reasoning Task

"Engineers and scientists constantly strive to
understand the differences between physical systems and
their models. Engineers troubleshoot mechanical systems or
electrical circuits to find broken parts. Many everyday
common-sense reasoning tasks involve finding the difference
between models and reality."” [Ref. 7]

Diagnostic reasoning requires a means of assigning
credit or blame to parts of the model based on observed
behavioral discrepancies. If the task is troubleshooting
then the model is presumed to be correct and all model
system differences indicate part malfunctions, as shown in

Figure 2.2. [Ref. 7]

16

oty pigt

MODEL STRUCTURAL SYSTEM

» DISCREPANCY
3
l‘ﬂ
l‘g
ﬂ . FREDICTED BEHAVIORAL OBSERVED
B BEHAVIOR ~————> DISCREPANCY -> BEHAVIOR
Y
o
5, Figure 2.2 Model-System Difference
!
i Usually, the initial evidence does not imply a
&
‘ﬁ unique explanation. Then the diagnosis requires two phases.
K
e The first, mentioned above, 1identifies the set of possible
% model-system differences. The second proposes evidence-
L)
]
% gathering tests to refine +the set of possible model-sytem
[
1
g differences until they accurately reflect the actual
?. differences. [Ref. 7]
)
f- "When these theoretical principles are applied in
W
v practice, it 1is important to note that experts seldom solve
problems wusing a rigorous theoretical analysis; rather,
"8
A their wunderstanding has a more ad hoc character. Some
»
2 excellent troubleshooting technicians, for instance, use
1
b very 1little theory. Yet, by using their own simpler)
. 1
2, conceptual models, they can troubleshoot a faulty device 1
-“ ‘
.-l
» quite efficiently.” [Ref. 8] 1
:) 3
W The thought process of a typical human expert for an 1
) ‘)
:. engine under diagnosis 1is:)
) ¥
i {
) \ :
ii: 17
"
‘:'o
=
o
D ‘~ y

"bﬁ%ﬁ'-'.'-‘b'\"u.’\\\""‘d "W
Ralal . o - P B N o 8 R »y,

5\\5‘\‘\-

AL TR T W I P S SRS At SR LR AL S SR AR R R G

Observe the behavioral discrepancies.
Identify the subsections of the engine system
which may explain the behavioral discrepancies,
using the structural definitions of system
model .
Starting from the most problem-related
subsection, search a known fault data base within
that subsection, to figure out +the relevant
faults using heuristic information.
Find a method supported by procedural information
to test and prune the possible faults.

o t of ! i Vehij i

The familiar example of a car engine system is
chosen as a model for the implementation of a small-scale
system which will diagnose vehicle malfunctions.

To gather information pertaining to procedural
knowledge from sources and convert them into facts and rules
format, it is essential to study car repair guides which are
a good source of information for how knowledge should be
represented. An engine system 1is composed of five major
subsections [Refs. 9, 10]:

1. Battery section.

2. Cranking/Starter section.

Ignition section.
Fuel section.

Compression section.

18

o’
N A SR AV T, T A at N g SR

> -
"o'... R A N T O W U RO W OO T RS e * s > o]

N And engine malfunctions can be separated into two
general groups:
") 1. Engine will not start. ‘
W 2. Engine performs poorly.
A common approach in the troubleshooting sections of
N car repair guides 1is to wuse charts of the most common
$ symptoms of engine malfunctions. For each symptom, relevant

subsystems of the engine system are indexed as in Figure

[2 3 ;
\:‘ e o . !
v '
)
1
¥,
- PROBLEM: SYMPTOM BEGIN AT SPECIFIC SUBSYSTEM
N Engine Will Not Start X
! Starter does not turn Battery, Starter)
. Starter turns, engine Starter i
doesn’t
" Starter turns engine Battery, Starter
> very slowly
g Engine fires Ignition
[intermittently
o
Engine Performs Poorly
'j Hard Starting Ignition, Fuel
J Rough idle Ignition, Fuel ¢
» Backfire through the Fuel, Ignition,
b carburetor Compression
Backfire through the Fuel, Ignition,
7 exhaust Compression
- Blue exhaust gases Compression
. Black exhaust gases Fuel
3 '-
i Figure 2.3 Index to Problems
~ X
~ 1
2 The user 1is expected to ©proceed to an indexed :
subsystem. Sections are arranged so that following each
e -
‘||
K 19
I‘
)
A Y

. -'.-. . - .f')-*‘d'-"'"-"J‘.f-*‘*-!'.-..f‘ -*- o -" . p‘nn*-ﬁ"".')

|':’
.&
“
i"‘
ﬁ' test, instructions are given toc proceed to another, until a
)
problem 1is diagnosed. For instance, 1in the sample for
]
;9 ignition section shown in Figure 2.4:
i
"
2
TEST AND RESULTS AND PROCEED
93 PROCEDURE INDICATIONS TO
]
:m: 4.1 Check for spark —~——> If no spark is evident 4.2
28 Hold each spark —> If spark is good in 4.3
Ko plug wire approx- some cases
imately 1/4" from }|——> If spark is good all 4.6
i ground with gloves
:J or a heavy, dry
‘o',:. rag. Crank the
e engine and observe
a3 the spark. —— |
t Figure 2.4 Sample Section
&
e This type of approach shows a decision lattice
'\ representation, a strictly procedural nature. However,
decision lattices are better for troubleshooting manuals
‘
¥ than for computers. Despite some of +the benefits of
) decision lattices in terms of ease of implementation and the
'3 minimal numbers of questions necessary to establish
g
l; conclusions, they shouldn’t be considered as general
Fo. structure for an expert system due to some of the following
iz disadvantages as stated by Rowe [Ref. 5];
N 1. They can’t always reason efficiently. !
1
Ko 2. They are difficult to modify.]
[~ 4
> 3. They may be difficult to design, since at each 1
i point we have to determine the best question to {
! ask. b
ig :
\% 20
l‘
K "
.' 50 S AT N o A A AR AT P T g T T il VTP A T VP P T AT, Ma S W S et A 0P 1P

-

h Also, a human expert searching a known fault set for
that subsystem wuses heuristic information, and then tests

", and prunes until some is found, not a procedural method.

e oo 'Y ¥y

]

";.“ ..' n‘; -" Al. :.

RO N

) 21

Y e e e O e e N N e N N I e e s

- . ‘ g 9 v, ¥ 2a"ale”
S \J * |' > ! ...'. u W/ WU WU “‘- ..‘..'. W W Wy Uhl .‘ n-] - YVea¥ e ua - - . - - - - - - - [3 - L} " -

U
"
™
I:"
oA
' III. DESIGN AND IMP NTATION
; []
3;.
? This chapter describes what techniques were used to
X

construct the expert system and why this particular

ﬂ;
i implementation was chosen.
i
R
K]
" A. PROGRAMMING LANGUAGE
8 The computer programming language Prolog 1is quickly

gaining popularity throughout the world, in artificial

intelligence applications. Prolog is like logic in that it

05 can infer solutions to problems. Prolog’'s ability to infer

E: solutions to problems changes the way 1in which programmers

> work.

N “"Prolog has three positive features that give it hey

; advantages over conventional programming languages. First,

< Prolog in syntax and semantics is so close to formal logic

J;: that programs are better understood and better maintained.

é Second, Prolog provides automatic backtracking, a feature

5 that simplifies searching alternatives. Third, Prolog

‘; aliows a procedure definition to be used for many different

_3 kinds of reasoning.” {[Ref. 5]

3 The availability of a Prolog programming tool for the

< IBM XT was a very important factor in this implementation. - f
,: The design was implemented with the Arity/Prolog interpreter '
,

o

i 22 :
R i
:

B M e et T B (g o ¢ e e ™ e 4 e e P s N T R A S T S SR e

DL

¢

>

EA LA

-~

LN

g el tag

which is a product of Arity Corporation, designed to be a

powerful, highly optimized, and extended version of Prolog.

B. APPROACH

What is expected from an expert system is to follow the

thought process of a typical human expert. As expressed
earlier, the design guidelines could be based on either
moving from the first principles or applying the

experiential approach. Moving from the first principles

which would require cumbersome techniques to simulate the

complex nature of engine system, and so is unapplicable.

Since both a wide variety of general-purpose car

repair/diagnosis books and the past technical experience of

the designer 1in engine maintenance field are available, the

experiential approach was chosen.

We next evaluated the juality of information available

in repair boocks and converted it into the more-convenient

l‘ s -

o~ rules and facts format. The design stages were decomposed
~

S

:: in the order of thought processes of a typical human expert.
'

o The first thing to do was to introduce into the computer the

'-

f, obhserved behavioral discrepancies in some way. A
'

~

o troubleshooting chart which collected the most common
o

. ’\

= symptoms under two general fault cases was mapped to
}j computer so that when the program 1is executed, it gives a
o

ﬁ menu asking for the case, gets symptoms from the user, and

¢ caches them.

'.

. ’.

2 23

':

’l

N,

'

>

G R A e e T P T T A s AT A

Once the symptoms are gathered interactively, the

diagnostic reasoning process should start. For instance,
suppose that a car engine will not start. There are ‘ '
numerous reasons that an engine will not start, from an
electrical failure to a faulty fuel system. For that
reason, the second step as followed by botn a typical human ;
expert and the troubleshooting charts is to identify the
subsystems which may explain the behavior and sort them in a
reasonable order. This was carried out by defining an
embedded table of pairs. each illustrating subsystems for 1
each symptom.

For the third stage of the system-developing phase,
following the procedural nature of troubleshocoting charts R,
was not appropriate as discussed in Chapter II. It was at

this point that a human expert and troubleshooting charts

diftfer from each other. Starting from the most prcblem-
related subsystem, we needed to search a known fault
database for that subsystem to find out faults which could
account for the same behavioral discrepancies. At this
point we needed a partitioned control structure. Technical
and heuristic information of the engine system was divided
into separate files containing rules and facts so that each
group would have minimal interactions with other groups.
Jdne more partition was needed to hold the global data and - f

general control structures. :

AR

L

R \- rﬂf'\'\'v ..-"r\' N -,‘y-.- " '\q . - ~\r..‘..,‘¢"- RO \-“‘d"~\l‘" . r o

N RPN PR ST U S Ry
T R s VO Oh A & e tts, o0l Py oA

Palarer:

r LA

=~y

AN

-
|

: 5"‘-‘-‘! | s ;

RPN

{-'("l.'l

S 'x'r_'; 45,

»
-

el
"%

s 1

-~
P P A}

A’ lu

- - g
LN W el L Y AV Tt Tt DAL Ul Rl Rl Sl o T S) DA A ol il

Some subsections showed different implementation
problems than others. For instance, due to the serializable
riature of defects in the battery section, each would show
the same symptoms. an exhaustive search mechanism was used
to> test them in 1a reasonable order. On the other hand, a
rule-cycle-hybrid ~on=rel structure was used for the
ignition system to test hypotheses.

Since faults within each subsystem were unique to 1t,
fault lists were used, as for instance:

list_of_expected_diagnosis (battery, (case_cracked,
case_intact, discharged_batteryl).

list_of_expected_diagnosis (battery_cable_connections,
[open_circuit, bad_cable_connections]).

Testing a hypothetical or actual defect 1is the same.
The human expert must find a method which will reveal
whether it exists or not. ’or that reason, we have a list
of some recommended methods gathered f.om repair books, for
each defect under consideration, as in the following:

recommended ([visual_inspection, high_beam, voltmeter],
battery, discharged_battery).

recommended{[visual_inspection,voltmeter],
battery_cable_connections, open_circuit).
Since we do not assign partial certainly to how precise a
method 1s., our expert system attempts each method 1in turn.

There are a couple of comments that we would like tc

emphasize. As could be noticed 1in the above format, the
25
vt «ﬂi\r.:\rhvn-ur%i\f\vﬂf\-\ixﬁn“\ft’nfnfnfu;\fu:ufufxfu”\f\f\fxfnf\fxfu“\“\“'“\”’

same equipment can be wused to verify more than one defect,
but this is rare. That suggests unique definition and
treatment for each operator. And each operator under
consideration passes through the three unigue steps:
1. _Satisfv Operator Preconditions: For each operator,

a precondition 1list 1is formed, such that an

operator would be applied only after achieving

each member of precondition list. This means:

- To check if an operator is available.

- If an operator is available, to check

if the user 1is capable of using this

operator.

- %30 as to avoid wrong conclusions, to

X

check what other system components
should be okay before applying the

operator, taking into consideration the

<
.
"
al
-
L
o

way the operator will be applied and the

expected measurement.

2 XN

- And finally, to give precedence to
system components which are
preconditions of other components, to
avoid unnecessary user dialogue.

Some example preconditions:

MW S ‘-f“vr Ny 'f '-"'-l'..(T Py e B T T e Y RN .\.‘_- RO \.\.__.\. A
. .. - N . N n & - D »’

preconditions (visual_inspecton,battery_cable_

connections, open_circuit,[]).

preconditions (voltmeter,battery_cable_
connections, bad_cable_connections, [(not
(defective (battery)), not(electrical _circuit_
problem), not (unable_to_use (voltmeter))]).
Procedure Test: Once the preconditions

for an operator in use are accomplished,

the specific procedure or method 1is

diplayed.

VYerifv _ Diagnosis: A specific
measurement is gathered from the user, a
measurement that should be consistent

with the data previously displayed.

In testing and pruning the possible defects, the
diagnostic reasoning process will come to an end if some are
found. Then the program displays verified diagnostic
results, ordered by the number of methods used to prove

them.

KNOWLEDGE BASE

As stated earlier, the knowledge base of our expert
system is composed of partitions, each similar in structure.
This enables us to maintain, update and debug easily only

the necessary partitions.

J f "',I\f"\'\.\" 'l"“. N".' PN AN SN \l N- \ \ * A)

e - - - R 4
A b Aal el Sl iR Aot i A A AR Y Lt

Procedural knowledge and heuristic knowledge are the
two types of information forming the knowledge base. As
discussed before, there was an inadequate amount of
heuristic information in the repair book in the BATTERY and
STARTING sections, so the partitions of those subsystems
were only procedural knowledge, whereas the IGNITION system

is composed of both types of information.

D. INFERENCE PROCEDURE

Two different inference engines were applied in
implementation. The procedure designated as inference-
engine 1 in the GLOBAL file does an exhaustive search to
test each defect in currently active knowledge base.

For those partitions which are going to be driven by
the exhaustive search mechanism, ordering the faults to be
tested is important, for two reasons:

1. It is a good 1idea to assign high priority to

testing defects which are thought to be most

likely.)
2. It is good to test preconditions of an operator
before testing +this operator. Otherwise, the

expert system will be unfocussed among components

to be verified.

The second procedure is designated as inference-engine

2 in the GLOBAL file. The rule-cycle-hybrid control

28

3
;
.

CaaN W Ty P B _ D P N L I I L R TR L
AN e e T D S '~ AR Py s

- .

Jl’l}l 1L)A.J'.‘-’\1 ij rets

Iy

by ;“‘-‘-n.“l.k g o be

> ‘e

T L

2 '2.0°2 0% 0" - " L) opal 10 tal e T, S ah vally’ e 8'ah R0 Rt B A A het® Sart et e ga Jblait T

structure written, 1in Prolog, by Rowe [Ref. 5] is variant

version of this procedure. Once hypotheses are gathered,

inference-=~gine 2 activates a procedure which will test

each hypothesis systematically.

A sample rule written in a format recognizable by the

rule-cycle-hybrid (from IGNITION knowledge base) is:

hr: - not (hypothesis (incorrect (distributor_firing_

sequence))),
fact (hard_starting),
fact (backfire_through_the_carburetor),
askif (recent_operator_job),
asserta (hypothesis (incorrect (distributor_firing
_sequence))).
The rule order for

rules governed by the rule-cycle-

hybrid is important. A rule is given precedence in database

order over the rules whose right sides mention a predicate

to be asserted by it.

E. USER INTERFACE

/‘JIJ‘J'

Three modules are required to support our user
interface. The first procedure ask-which in the GLOBAL file
was written originally by Rowe [Ref. 5] but was adapted.
The procedure ask-which gathers symptoms, behavioral
discrepancies observed by user. When it is invoked, it
gives a menu, four questions at a time, and asks which
questions should be answered yes. After getting the

29
e Ay e S w'\.’\‘\'\.‘\'vvu "\.’\.‘\'\'\s\ ~ '\-." ’\ NN '\'a.'~' y

\

r-“

8
:
X s
% answers, the invoking procedure checks for contradictory '
" answers, consulting a table ¢of contradictory sets. If there
'5 is some contradiction, the user is warned. When all done
E with input, the symptoms gathered are added to current
' database by the asserta built-in predicate.
Ly The second predicate askif of one argument was written)
? originally by Rowe [Ref. 5] but, was adapted again with some A
" minor modifications. This procedure gets virtual facts
: (facts demanded only when needed). The user 1is prompted by
$ some question and is expected to answer either affirmatively)
5 or negatively. Otherwise it complains and asks for a
? reasonable answer. Also the answer is cached, so as to not]
'; ask the same gquestion again. ,
1 The +third procedure is code-interpreter. This
> procedure displays the text of information related to a E
: method to be followed by user to achieve a measurement. If ;
)

;

the user 1is not satisfied with the information supplied, it

gives the user further explanation, if available.

F. MODULES

i Our expert system is made up of partitioned knowledge

SARAAANTY

bases. While the knowledge bases for BATTERY, STARTER and

IGNITION sections are fully implemented, each under the same

Ll

filename as their section names, the knowledge bases for

gt g sk

FUEL and COMPRESSION sections were not implemented due to

time constraints. But to show the features and capability

- -
o~

30

+
?

of a vehicle diagnosis expert system, those unimplemented
knowledge bases are suggested in the ENGINE partition for
one particular fault case.

The partitioned knowledge bases are necessary not -nly
for ease 5f maintenance and debugging, but also to support
different <control structures for each. For that reason,
rather than using the consult built-in predicate, a
reconsult predicate (which replaces the predicates currently
in database with new ones) is always used.

One interesting and powerful feature of our expert
system occurs when the rules belonging to current partition
need to access momentarily some other partition for specific
information about some component. Then the current process
state is saved by the save built-in predicate, and the
intformation referring to the current process state is pushed

onto a process stack, and the new partition is brought in by

LY
N
i
-
w
‘.
o

the reconsult predicate. When all done, the original

)

process state is resumed by the restore built-in predicate.

A ALLAAP S

T
\-‘t'-'fr'

AN

RS ' N AR A] - .. e ~o)\{\f\(-'?"f’“ \"'\"\’-".'.' \f'-""-r\.'".-.'l¢-'l".}.'.f

> ' B

et ve e Bt it At bt pob 20 B AR 5 R 0°8 0%h §'s Bfs" 8 o o008, " 20) At e i Al e % % ¢ 040 at At it et e A N AL ALARCAL L L AENLS,

5

')..
o
ut
o

L::

0
‘ IV. CONCLUSIONS AND RECOMMENDATIONS
"

)

‘.l
i A. TONCLUSTIONS

. L)

) Arity/Prolog appears suitable for this implementation,
(- and the rich built-in predicates available were helpful.
L
S
b However, the deficiency of error-checking mechanisms against

minor misspellings leads to bizarre unintended effects.
?‘ The reasoning process in repair manuals which is not

!
¥ suitable for computers was effectively converted into a
4

rule-based model so that the thought process of a typical
e
ﬁ human expert was efficiently simulated. So a fully
1)
;"
?: implemented diagnostic expert system could be used in place

]

[}

a of a human expert.

e
K
R
N B. RECOMMENDATIONS

-

As is <clear from this thesis, a full implementation of

L
$ our system is quite possible. A better diagnostic expert

system could support a user by graphic enhancements. The
¥

1 location of a component, the necessary steps to access the
K component, and some specific procedures to make a
N measurement could be displayed to an unexperienced mechanic
.

h)

0 graphically.

!

S An expert system should be able to explain 1its
' reasoning path for teaching and debugging purposes. We
N
W

could enhance our expert system with that feature.

32

[o 20 oL L R I L A ng? 2" o, '-'_‘.-.
e A e

YR PR LR A X LR U O gt Bat-Bav B¢ St e ”

Y
APPENDIX A
0 SOURCE CODE
)
N This appendix contains a listing of the main program (held in the
N GLOBAL, BATTERY, STARTER, IGNITION, and ENGINE section files
P
N which contain the knowledge base of the expert system).
P
5: This expert system implementation was written in the version of
"y the PROLOG language known as ARITY-PROLOG (which is a product of
\)
':,‘ Arity Corporation) and runs under the MS-DOS operating system on
P
"> IBM PC/XT clones. This version of PROLOG is closely based on
: standards as described in Clocksin and Mellish [Ref. . -].
o
:" Having entered the PROLOG, the program comes up with a short
0
:Qs message about start-up and then the user starts the consultation with
ry the query of “diagnosis.” The lines that are limited with “/*" are
::‘ comment lines. They should not be confused with actual PROLOG
Y code.
5
l‘
Ly
-
(L
::
o
i
~;
.
&
.l
(%
R

:‘ oo IR I -'»—' N fi' P ~¢ afa et e of A" o o ~l ..v n.'- ..r\- - o 1 W " W " \.'l"‘. . I‘ f..ff.'
L) N NE, 0 . . 8 . » - »

PO SET AN SRS

%THE FOLLOWING CONTAINS THE CONTENTS OF GLOBAL FILE,
/ “.‘MA[N PROGRAM....

:- cls,nl,nl,nl,
write($ VEHICLE DIAGNOSIS EXPERT SYSTEM IMPLEMENTATION &),
nl,

write($ Please enter "diagnosis” to start the consultation. &),
nl,nl.nl

The predicate “DIAGNOSIS” is the top level predicate to start the expert system.

diagnosis :- procedure_list (LIST), run_diagnosis(LIST),
findall (X,proved(diagnosis(X,Y)).L),
diagnosis_likelthood_list(L.LM,LL),
write($ MOST LIKELY DIAGNOSIS LIST : $).nl.nl,
write_list{LM),write($ LESS LIKELY DIAGNOSIS LIST :$).
nl,nl,write_list(LL).

Having been supplied by the symptoms, by means of early dialogue with consultor,
the problem state is identifled and relevant subsections of the engine system of the
vehicle to be considered are held within a list, which is the argument of predicate
“PROCEDURE-LIST in a reasonable order. At this point, the general expert
approach is to search those sections one by one in the order they were thought to be
reasonable, until some specific diagnostics are found.

/O

run_diagnosis(LIST) :- proved(diagnosis(Diagnosis,Equipment)).

run_diagnosis({}).

run_diangosis({Section | Sections]) :-
file_table(Section.Section_File),
write($*** $),write(Section_File),
write($ SECTION ***$).nl,nl
reconsult(Section_File),
restore_database(Section_File)
section_engine_table(Section.Inference_Engine},
call_engine(Inference_Engine),
run_diagnosis(Sections).

run_diagnosis([Section:Sections]) :-
not(file_table(Section,Section_File)),
write($*** $).write(Section),
write(has not been tmplemented yet. ***8),
nl,run_diagnosis(Sections).

call_engine(Inference_Engine) :- call(Inference_Engine).
call_engine(Inference_Engine).

/‘
The predicate “PROCEDURE-LIST" initiates the communication with consultor.
. using menu-driven interaction method. at the very early program stage, to obtain
v the symptoms to create existing facts and assess subsections of engine system to be
considered related to problem state.
r*

AT O AR N A A Y WNANWW Y W NN 5.0 Ol ld, Wy W W W e L

D
:::; procedure_list(LIST) :- start_up_menu(Answer_List),
4 create_facts(Answer_List),
e list_finder{Answer_List,L),sort(L,L1),
! .list_converter(L 1 LIST).
KA
“
R start_up_menu(Answer_List) :- repeat,
K ['ask_which([engine_wont_start.
.::'. ’ engine_runs_poorly],List!],
’ not{contradiction(List)),
" create_facts(List).!,
sub_menu(List Answer_List).

sub_menu(List Answer_List) :- member{engine_wont_start.List).repeat,

. [lask_which([starter_doesnt_turn_at_all,

W starter_turns_but_not_the_engine,
slow_cranking.normal_cranking,quick_cranking.

X engine_fires_intermittently,
K\ engine_fires_consistently),Answer_List)!].
:: ‘ not(contradiction(Answer_List)).

() b]

, sub_menu(List, Answer_List) :-member{engine_runs_poorly, List).repeat.[!

KK ask_which(lhard_starting,rough_tdle,stalling.

‘ engine_dies_at_high_speed,
hesitation_on_acceleration,

poor_pick_up,.lack_of_power,
- backfire_through_the_carburator,
™, backfire_through_the_exhaust,
b blue_exhaust_gases.black_exhause_gases,
o' : running_on,susceptible_to_moisture,
misfire_under_load.engine_miss_at_high_rpm,
< misfire_at_idle_speed].
~ . Answer_List)!], not(contradiction(Answer_List)).
‘™Y
o~
L ask_which(|A.B.C.DIL].List) :-
< screen_ask_which((A.B,C.D].[A.B.C.D].Lst).
. ask_which(L.Intlist), append(Lst,Intlist,List).
o ask_which({].)).
X ask_which(L.List) :- length(L.N).N<4.N>0,
.\ screen_ask _which(L,L.List).
" screen_ask_which((XIL).L2.Lst) :- length(L.N).length(L2.N2).
N3 is N2-N,write(N3),write(":').questioncode(X.Q) . write(Q).
vy write('?'),nl,screen_ask_which(L.L2.Lst).
Py screen_ask_which([].L2,Lst) :-
- write($ Give numbers of questions whose answer is yes.$),
_:-. read(AL).nl create_list(AL,L2, Lst).
(4]

create_list({],L2.(]).
create_list{[NIL]),L2,[1/L3]) :- item(N,L2.]),

- create_list(L,L2.L3).
create_list([N|L],L2,L3) :- not(item(N,L2.1)),

create_list(L,L2,L3).

AR

o

“ oo
'\J.'\-'»'-.’l

- . N LI - S < Y
NG g ‘ W B N LT S T .r\'.r‘.f\..f\- .'f__(\.r c'_.-"-‘. ~ _'-'\J‘,’ KRR
- B B . . v B B ! oy

o

item(1,[XIL].X).
item(N.[XIL),]) :- N>1,N2 {s N-1.item (N2 L.I).

contradiction(List) :- length(List,N).N>1,
contradictory_list(X,L),
('member(X,List)!],not(list_done({X],List,L)),

message.

list_done(A.B,[]).
list_done(A.B.[CID}} :- union(A.[C],E).!.not(subset(E B)).

list_done(A.B,D).

create_facts(({]) :- !
create_facts(Fact | Answer_List]) :-
assertalfact{Fact)).crate_facts(Answer_List).

list_finder([X!L1],L) :- check_list(X,List) list_finder{L1,L2),
union(List,L2,L).
list_finder({}.{]).

list_converter(|(].[}).
list_converter{[X!L].[YIL1]) :- convert(X,Y),
list_converter(L,L1).

/‘
The complicated nature and peculiarities of subsections of the engine system
necessitate more than one inference-engine to process the defined subsections.
INFERENCE-ENGINE1 simulates the role of “exhaustive-search-mechanism" for
the section it was allowed to process.

/C

inference_enginel :- not(all_done).

all_done :-
list_of_expected_diagnosis(Part,.Expected_Diagnosis_List),
attempt_to_verify_all(Part,Expected_Diagnosis_List).fail.

attempt_to_verify_all(Part.[]).
attempt_to_verify_all(Part,
[First_Diagnosis | Expected_Diagnosis_List]) :-
verify_diagnosis(Part.First_Diagnosis),
attempt_to_verify_all(Part . Expected_Diagnosis_List).

verify_diagnosis(Part First_Diagnosis) :-
recommended{Equipment_List ,Part First_Diagnosis),
verify_using_all(Equipment_List,Part,First_Diagnosis).
verify_using_all({],Part,First_Diagnosis).
verify_using_all([First_Equipment:Equipment_List],Part,

----- P4 ., .

S e v ", LA o« -
WSROI NN SR CS OIS S I Y s

Bl

N

PSR

)
Pl e 8

o

F 3 B

el Sy

* >

L L4 %Y
b R

| 3
PO R A P)

. . o aE -
LA SN ol i o g il S PR N W W N W T T VP aaT -

First_Diagnosis) :-
apply_equipment(First_Equipment.Part First_Diagnosis).
verify_using all(Equipment_List,Part ,First_Diagnosis).

apply_equipment(First_Equipment, Part.First_Diagnosis) :-
preconditions(First-Equipment. Part First_Diagnosis,

Precondition_List),
satisfied_preconditions(Precondition_List).find(Part).
get_ready_equipment(First_Equipment Part First_Diagnosis),
prove_diagnosis{First_Equipment.Part First_Diagnosis).

apply_equipment(First_Equipment,Part First_Diagnosis) :-
preconditions(First_Equipment, Part.First_Diagnosis.
Precondition_List),
not{satisfled_preconditions(Precondition_List}).
satisfied_preconditions({}).
satisfied_preconditions([First_Precondition:Precondition_List})

:- call_precondition(First_Precondition),
satisfied_preconditions(Precondition_List).
prove_diagnosis(First_Equipment, Part First_Diagnosis) :-

proved_diagnosis(First_Equipment. Part First_Diagnosis),
update_diagnosis_cdtabase(First_Equipment First_Diagnosis).
prove_diagnosis(First_Equipment.Part First_Diagnosis) :-
not(proved_diagnosis(First_Equipment, Part First_Diagnosis)).
update_diagnosis_database(First_Equipment.First_Diagnosis) :-
not(proved(diagnosis(First_Diagnosis First_Equipment})).
asserta(proved(diagnosis(First_Diagnosis First_Equipment))).
update_diagnosis_database(First_Equipment. First_Diagnosis) :-
proved{dtagnosis{First_Diagnosis,First_Equipment)).

/‘
The predicate “DIAGNOSIS” of one argument searches for the malfunction in

particular, provided that the name of the malfunction is supplied as its argument.
/‘

diagnosis(Dtagnosis) :- proved(diagnosis(Diagnosis.X)).

diagnosis(Daignosis) :- list_of_expected_diagnosis(Part,
Expected_Diagnosis_List),
member{Diagnosis,Expected_Diagnosis_List),
verify_dtagnosis(Part.Diagnosis),!,
proved(diagnosis(Diagnosis.X)).

/‘
INFERENCE-ENGINE2 simulates the role of “rule—cycle-hybrid control
mechanism” for the section it was allowed to process.

/‘

inference_engine2 :- hybrid.!.doall_until.

done :- hypothesis(Diagnosts).

hybrid :- done.

hybrid :- not(one_cycle).flag.abolish(flag/0). hybrid.
one_cycle :-hr,asserta(flag).fail.

N WS Y T
AL S A DA AT AT

M ava

doall_until :- doall,not(hypothesis(Diagnosis)).

doall :- not(alltried).
alltried :-call(test_hypothesis).fail.

test_hypothesis :-hypothesis(Diagnosis).
['retract(hypothesis(Diagnosis))!].
diagnosis(Diagnosis).

/.
The predicate “DIAGNOSIS-LIKELIHOOD-LIST" sorts the malfunctions whose
existence has been proved by the expert system, and assigns them likelihoods
according to the number of methods used to locate them.

/.

diagnosis_likelthood-1ist([].[].[]).
diagnosis_likelthood_list([X].[].[X]).
diagnosis_likelthood_list(IXIL).[X1L2],L3) :-
member(X.L).delete(X,L.L1).
dtagnosis_likelihood_list(L1,L2,L3).
diagnosis_likelthood_list([XIL].L1.[XIL2)) :-
not(member{X,L)),
diagnosis_likelthood_list(L.L1,L2).

/‘
The predicate “ASKIF" of one input argument performs the interaction between
expert system and consultor. It will have only one argument. the question, and it
will succeed if that question is answered affirmattvely and fail if the question is
answered negatively. If an answer is unclear. it will complain and ask for another
answer.

/0

askiffA) :-
ask(A.B),
positive_answer(B).

askifnot(A) :-
not askiflA).

ask(A.B) :-
asked(A,B).

ask(A.B) .-
not asked(A,B),
(questioncode(A,C);global_questioncode(A,C),
write(C),
write($? (yes/no) => $),
read(D),
nl,
(! answer(D.B)
1,
not unexpected_answer(B),
asserta(asked(A,B)).

O AN A A NN LA

ask{A B) :-
not asked(A.B).
not questioncode(A,.C).not global_questioncode(A.C),
write(A),
write(87? (yes/no) => $).
read(D),
nl,
[! answer(D,B)
!]'
not unexpected_answer(B),
asserta(asked(A,B)).

d

<

answer(A,B) :-
not unexpected_answer(A),
B=A

» - o o
-

answer(A,B) :-
not unexpected_answer{A),
repeat,
write($ Please answer yes or no ==> $§),
read(B),
nl,
not unexpected_answer(B).

unexpected_answerl(A) :-
not affirmative(A),
not negative(A).

L=\
.
el
1l
7Y
I’
”

positive_answer{A) :-
affirmative(A).

/‘
The predicate “CODE-INTERPRETER" provides the consultor with the domain-
dependent information.

"

code_interpreter{A) :-
expressed(A).
code_interpreter{A} :-
not expressed(A),
code(A.B.C),
write(B),
nl,
asserta(expressed(A)),
further_explain(C).

further_explain($No more$) :- !.

further_explain (A) :-
askifineed_explain),
retract(asked(need_explain, B)),
write(A),
nl.

further_explain(A) :-
askifnot(need_explain),

A S R N A A Y .- TN
B . . A, X

retract(asked(need_explain,B)).

delete(X,[1.[).
delete(X,[(X1L]. M) :- delete(X.L.M).
delete(X.[YIL].[YiM)]) :- delete(X.L,M).

append((].L.L).
append([X|L1],L2,[XIL3)) :- append(L1,L2,L3).

subset([] ,A).
subset([A|B].C) :- member{A,C).subset(B.C).

member{X,[XIL)).
member({X.[YIL}) :- member(X.L).

union([].X.X).
union([XIR}.Y.Z) :- member (X.Y),!,union(R.Y.2).
union ([XIR].Y.IX!2Z]) :- union(R.Y.2).

write_list([]) :- !.
write_list([X1Y]) :- write (X).nl,write_list(Y).

first(IX1L].X).

second([X.YIL]LY).

The fact “CHECK—LIST” holds the list of subsections of engine system, determined
hypothetically, concerning each specific symptom.

check_list(starter_doesnt_turn_at_all,[10,20)).
check_list(starter_turns_but_not-the_engine.[20]).
check_list(slow_cranking,[10,20}).
check_list(normal_cranking,[30]).
check_list(quick_cranking,[50]).
check_list(engine_fires_intermittently,[30]).
check_list(engine fires_consistently,[40,50]).
check_list(hard_starting,[30,40]).
check_list(rough_idle,[30.40]).
check_list(stalling.[30,40]).
check_list(engine_dies_at_high_speed.[30.40]).
check_list(hesitation_on_acceleration,[30.40]).
check_list(poor_pick_up.[30,40]).
check_lsit(lack_of_power,[30,40]).
check_list(backfire_through_the_carburator.[30,70j).
check_list(backfire_through_the_exhaust.[30,.70]).
check_list(blue-exhaust_gases.[50,60]). 7
check_list(black-exhaust_gases,[40]).

check_list(running_on,[30]).

o) check_list(susceptible_to_moisture,[30}).

2 check_list(misfire_under_load.[30.60.70]). §

. aa 0ip e Ll B At AT AL A AN A At a0’ a0t gl g et U R B B B0 Al % g~ Al a L Sl el A e b Sl A A Aal Sl et

()
l.]
s

)
N check_list{engine_miss_at_high_rpm,(30]). .

% check_list(misfire_at_idle_speed.[30,40.60]). ,
M r :

The fact “CONTRADICTORY— LIST" holds the list of symptoms for each symptom, to

Y establish that a symptom in question is a member of the set of possible symptoms.
b d
::‘. contradictory_list(engine_wont_start,[engine_runs_poorly]).
N . contradictory_list(starter_doesnt_turn_at_all,
‘ [starter_turns_but_not-the_engine.slow_cranking,

] normal_cranking.quick_cranking,

-. engine_fires_intermittently,

o engine_fires_consistently]).
o contradictory_list(starter_turns_but_not_the_engine, '
N {slow_cranking . normal_cranking,quick_cranking, J
n engnie_fires_intermittently,

engine_fires_consisstently]).

@ contradictory_list(slow_cranking.[normal_cranking,quick_cranking]).
" contradictory_list(normal_cranking,[quick_cranking]). '
W s
\:a contradictory_list(engine_fires_intermittently, ¢
o\ [engine_fires_consistently]). !
W, contradictory_list(blue_exhaust_gases,[black_exhaust_gases]).
- convert(10.battery).
O convert(20,starting_system).

\ convert(30.ignition_system).
convert(40,fuel system).

i convert(50,.engine_compression).
convert(60.engine_vacuum).
convert(70,valve-train}.

Y find(sub_diagnosis).
N find(complete_system).
find(ignition_switch).

N find(Part) :- askiffwhere(Part).!.

N find(Part) :- code_interpreter{Part) retract(asked(where(Part),

* gt
V. X)).assert(asked(where(Part),yes)). :
>

unable_to_use(X) :- askifnot(has(X)).
unable_to_use(X) :- askifnot(how_to_use(X.known)).

A
' »
’ »
Y affirmative{yes).
, affirmativeyl(y).
iy affirmative(right).
1 affirmative(okay).
o negative(no).)
. negative(n).
. negative(not).
X
.'
I.'
v. ¢ L +
o

. AL e
SN AN

0
...

-,
"o v

»

i
I'\-',

o* : 'f.\'f“f N

PR A Sl S S Sl Sy _\"”-' Ay

-"‘-"" NN AN

‘.

'-a":r")_;\’.-*.r" \J,\."\ W '-"\- '.' '..

negative(never).
negative(impossible).

global_questioncode(need_explain,
$Do you need further explanation$).

global_gquestioncode(hear{X).X) :-

write($Did you hear a sound like a $).
global_questioncode(has(X).X) :-

write($ Do you have a $).
global_questioncode(how_to_use(X.Y).X) :-
write($ Do you know how to use a $).
global_questioncode{where(Part). 8) :-
write($Do you know where the $),write(Part), write($ is$).

questioncode(engine_wont_start.$ Does the engine start at all$).
questioncode(engine_runs_poorly,$ Does the engine run poorly$).
questioncode({starter_doesnt_turn_at_all,

$ Does starter turn at all$).
questioncode(starter_turns_but_not_the_engine,

$ Does starter tumn, but not the engines).

questioncode(slow_cranking,
$ Does starter turn engine very slowly$).
questioncode(normal_cranking,$ Does starter turn engine normally$).
questioncode(quick_cranking.$ Does starter turn engine very quickly$).
questioncode(engine_fires_intermittently,
8 Does engine fire intermittently$).
questioncode(engine_fires_consistently,
$ Does engine fire consistently$).
questioncode(hard_starting,$ Do you have hard starting problems$).
questioncode(rough_idle $ Do you have a rough idle$).
questiocode(stalling,$ Do you have stalling$).
questioncode(engine_dies_at_high_speed.
$ Does engine die at high speed$).
questioncode(hesitation_on_acceleration,
$ Do you have hesitation (on accelaration
from standing stop)$).
questioncode(poor_pick_up.$ Do you have poor pickup$).
questioncode(lack_of_power,$ Do you have lack of power$).
questioncode(backfire_through_the_carburator,
$ Do you have backfire through the carburators).
questioncode(backfire_through_the exhaust,
$ Do you have backfire through the exhaust$).
questioncode(blue_exhaust_gases.$ Do you have blue exhaust gases$).
questioncode(black_exhause_gases.$ Do you have black exhaust gases$).
questioncode(running on.$ Do you have running on (after the ignition
is shut off$).
questioncode(susceptible_to_moisture,.$ Is it susceptible to moisture$).
questincode(misfire_under_load.$ Does the engine misfire under load$).
questioncode(engine_miss_at_high_rpm,
$ Does the engine misfire at speed$).
questioncode(misfire_at_idle_speed,
$ Does the engine misfire at idle speeds).

h P NAPLINTS |

P S I B P A A LS |

~ N
»n

S

i S e MA S B Tl el Rl Cal —~ e
o PPN TON JOR O U N X LR) oot 4et W g W S MU ¥ N P % AN \ oo T AL B's 0 b A8 fof
€ 4as 90 6.0 a8 L0 00t 0008 20 g - - v

-

l'.
i
R
;.o{ call-precondition{F_P) :- call_precondition2(F_P),!.
.ﬁ' call_precondition(F_P) :- call_precondition3(F_P).!.fail.
:.:: call-precondition(F_P) :- !.call(F_P).!.
W call_precondition2(First_Precondition) :-
,:.: asserta(ticket),
ke not(clause(fact(First_Precondition,JJJ).true}),
1;.- predicate_file_interface(First_Precondition,Section_File),
N process_stack(LIST),[!not(first(LIST.[Section_File.X.Y])).
retract(ticket).first(LIST,[File_Name XX,.File_Attribute]),
)y find_world_name(File_Name, File_Attribute World_Name),
Gt save(World_Name),world_snap_shot(SN1),
s assertalcache(World_Name,SN1)),assertal(ticket),
2 write($*** LOADING $),
W write(Section_File), write($ SECTION ***$).nl,nl.reconsult{Section_File),
0 retract(waiting process_number(N1)),N2 is N1 + 1,
asserta(waiting process_number{(N2)),
W retract(process_stack(LIST).append({[Section_File fail, N2]],
’c:‘ LIST,FINAL_LIST).asserta(process_stack(FINAL_LIST))!],
My call(First_Precondition),world_snap_shot(SN2),
iy write($*** EXITING $),write(Section_File),
R write($ SECTION ***$).nl.nl create(TEMP,temp.art),
advance_world(TEMP,SN1,SN2),
: restore(World_Name),[temp].delete('temp.art),
0 asserta(fact(First_Precondition.yes)),
Ty !,
RY
s call_precondition3(First_Precondition) :-
o ['retract(ticket)!).not(ticket),
A, not(clause(fact(First_Precondition,JJJ).true)),
..'j predicate_file_interface(First_Precondition,Section_File),
] waiting _process_number(N1),
' Process_stack(LIST).first(LIST.[Section_File.fail, N1}),
. write($*** UNLOADING $),write(Section_File),
A write($ SECTION ***$).nl.ni,
o second(LIST,{File_Name XXX File-Attribute])),
i find_world_name(File_Name, File_Attribute,
v World_Name),retract(cache(World_Name,SN1}},
[~ world_snap_shot(SN2),create(TEMP,'temp.ari’),
advance_world(TEMP,SN1,SN2),
Y restore{World_Name),[temp].
W asserta(fact(First_Precondition,no)).delete('temp.art’).!.
: /‘
: The predicate “ADVANCE-WORLD" serves to advance the database of the previous
L state with the facts asserted and conclusions reached, while still keeping the
\ database consistent.
‘oA fad
o
y advance_world(TEMP,LIST1,LIST2) :-
M write_cache_list(TEMP,LIST1,LIST2).!.
o
¥
i
N

v
e e e AT A" e A A A A
O R A VAT R P A S TR Y Ay S

PR 4% 0 ¢ g8 Jab fat $2% " Jat A be® 8 * s §a% Bg® @ gut b 8.0 St Bt W M U ~allt ~ M Y " » } al Pty

™
60
;
i
]
)
iy
A write_cache_list{TEMP,LIST1.LIST2) :- member (X.LIST2),
o not{member{X,LIST1)).write({TEMP.X),
. write(TEMP,.}.nl(TEMP) fail.
::. write_cache_list(TEMP,LIST1,LIST2) :- nl(TEMP).close(TEMP).
! ”
::') The predicate “RESTORE-DATABASE" of one argument accepts the current partition
" name residing as its argument and initializes process-state parameters for that
partition.
¥
::‘ restore_database(Section_File :-
‘ abolish(process_stack/1),
o abolish{waiting_process_number/1),
v asserta(process_stack([{Section_file true,0ll)),
asserta(waiting process_number(0)).
(\/
.‘ P
The predicate “CACHE-PREDICATE-LIST" keeps the list of facts, to be carried
W among the process states, once they were cache advanced.
h r
. cache_predicate_list([asked(A.B),proved(diagnosis(C,D)),
» expressed(E),cracked_battery,
N electrical_circuit_problem,light_problem,
) defective(battery),
iy rest_of_okay(starting_system),
i high_resistance_in_engine]).
N r
Ny The purpose of the predicate “FIND-WORLD-NAME" s to code and decode either
) current or previous process state to a unique flle name to be saved or restored.
N r
v find_world_name(File_Name File_Attribute,World_Name) :-
- atom_string(File_Name,String1),
, substring(String1,0.3,String2),
s int_text(File_Attribute,String3),
= concat(String2,String3, String4),
X atom_string(World_Name,String4).
’”
> The predicate “WORLD-SNAP-SHOT" gets the list of whole asserted facts within the
- process state for which it was called.
=
W r*
,ﬁ: world_snap_shot(LIST) :- cache_predicate_list(L1),
g run_snap_shot(L1,LIST),
= run_snap_shot([X],LIST) :- local_snap_shot({).X.LIST).
1
o run_snap_shot({X |LIST],LIST2) :-
X local_snap_shot([].X,LIST1).
' ! run_snap-shot(LIST,LIST3),
.
1
h L
e
‘ 1
']
R ’
W™
7..‘

P I AR BN T TN R e o Lt T T e e AT N G T AT A S T N YN AR A S
¥ A ket ol o 8. AL A

< gy - * Sat . Su' Sa¥aln® e 0 S mat et 08’ abe a0’ o08*
."""""""'"‘ VN 2, 4 P W W Uk ‘gt " K AN - : W > d. - - - ‘. ‘... LS 1, 4%
¢

. append(LIST1.LIST3,LIST2).

. local_snap_shot(A.B.C) :-

: asserta(sublist(A)),

b clause(B.true).[!'sublist(E).append([B}.E.F)}.
A retract(sublist(E)).asserta(sublist(F))!].fall.
N local_snap_shot(A.B.C) :- sublist(D),retract(sublist(D)),C=D.!.

))-)JJ

’

i i s

I Sy 4

N A g P R R AR A L L T A A LA A W AR SRR

W %THE FOLLOWING CONTAINS THE CONTENTS OF BATTERY FILE.

" ' list_of_expected_diagnosis(battery.[case_cracked.case_intact,

discharged_battery]).
list_of_expected_dlagnosis(battery_cable_connections,

:',j [bad_cable_connections,open_circuit)).

)

:-:' recommended(lvisual_inspection].battery.case_cracked).

I recommended([visual_inspection}.battery.case_intact).

W recommended(/high_beam hydrometer], battery,

discharged_battery).

" recommended(lvisual_inspection, high_beam,voltmeter},
. battery_cable_connections.bad_cable_connections).

o recommended([visual_{nspection,voltmeter],

K ;}. battery_cable_connections,open_circuit).

K.

preconditions(visual_inspection.battery.case_cracked.|]).
preconditions(visual_inspection,battery.case_tntact.{]).

h¥ preconditions(high_beam battery.discharged_battery,

;:\ (not(cracked_battery).not(light_problem)]).
K preconditions(hydrometer,battery.discharged_battery,

4 [not{unable_to_use(hydrometer))).

’ predonditions(visual_inspection. battery_cable_connections,
3 bad_cable_connections,(]}.

v preconditions(high_beam, battery_cable_connections,

) bad_cable-connections,[not(cracked_battery).

[not(light_problem).not(electrical_circuit_problemy)]).
:; preconditions(voltmeter,battery_cable_connections,

bad_cable_connections,{not(defective(battery)),
not(electical_circuit_problem),
not(unable_to_use(voimeter))]).

-~ preconditions(visual_inspection.battery_cable_connections,
" open_circuit.[)).
:} preconditions(voltmeter.battery_cable_connections,open_circuit,
N [not(defective(battery)),

e not(unable_to_use(voltmeter))]).

cracked_battery :- diagnosis(case_cracked).asserta(cracked_battery).
o electrical_curcuit_problem :- diagnosis(open_circuit) asserta

(electrical_circuit_problem).

:‘: light_problem :- askifnot(light_on).asserta(light_problem).
N defective(battery) :- cracked_battery.asserta(defective(battery)).
o defective(battery) :- diagnosis(discharged_battery),asserta(defective(battery)).

o questioncode(light_on,
L $Did the light come out when the knob turned on$).

o questioncode(dim.$Did the lights dim considerably or go out$).
~ questioncode(low_charge.8Does it indicate less than 1.140 @8).

o questioncode(cracked,8Is the battery case crackeds$).
> questioncode(exceeded,$Did voltage drop exceed 0.4 volts$).
questioncode{intact,$Is the battery case intact$).
» questioncode(bad.$Did you notice bad cable or connections$).
.q questioncode(open_circuit.$Did you notice an open connection$).
questioncode(same,$Is the reading same as the battery reading$). '
o 1
>,
7,
-
N '
S

L
J'\J"- Call el

v'.'
L)
S
o code(10.$Turn lights on high,
& try starter and note action of lights.$,$No mores).
i code(20.8Test the state of charge of
. battery using the hydrometer.$,$No more$).
o code(30.8Inspect the battery case. $,
o $For cracks, corrosion and water level.$).
KN code(40.8Connect prods of voltmeter on 3-volt scale to
Bl grounded battery post and starter moter housing.
Hes Close the starter switch and not the voltmeter
reading.$.8No more$).
b code(50.8Inspect the battery cables.$,
$ $For loose, broken open cables and connections:$).
N code(battery,$Battery located under the engine hood.
\ most probably on right front of the vehicle.$,
o $No more$).
B code(battery cable connections,
$Located between battery and starter unit.$,$No more$).
{1
: get_ready_equipment(visual_inspection,Part.case_cracked) :-
) code_interpreter{30).
yw get_ready_equipment(visual_inspection Part.case-intact) :-
Ny code_interpreter(30).
e get_ready_equipment(high_beam.Part.discharged_battery) :-
h code_interpreter(10).
u get_ready_equipment(hydrometer,Part,discharged_battery) :-
N code_interpreter{20).
b get_ready_equipment(visual_inspection,Part.bad_cable_connections)
‘ :- code_interpreter{50).
) get_ready_equipment(high_beam,Part,bad_cable_connections) :-
code_interpreter{10).
ey get_ready_equipment(voltmeter,Part.bad_cable_connections) :-
< code_interpreter{40).
o get_ready_equipment(visual_inspection,P.open_circuit) :-
N code_interpreter{50).
~ get_ready_equipment(voltmeter.Part.open_circuit) :-
AN code_interpreter(40).
Y
y proved_diagnosis(visual_inspection,Part,case_cracked) :-
M askif{cracked).
. proved_diagnosis(visual_inspection,Part,case_intact) :-
P askif{intact).
’ proved_diagnosis(high_beam,.Part,discharged_battery) :-
3 askif(dim),askif(hear(clattering)).
- proved_diagnesis(hydrometer,Part . discharged_battery} :-
o askif(low_charge).
,;:- proved_diagnosis(visual_inspection,Part.,bad_cable_connections) :-
< askifibad).
. proved_diagnosis(high_beam,Part.bad_cable_connections) :-
:"5 askif(dim).
I proved_diagnosis(voltmeter Part,bad_cable_connections) :-
hig askiflexceeded).
-;‘ proved_diagnosis(visual_inspection.Part,open_circuit) :-
o
N
! w:
>
N
)
‘;:: v e T e A I P T A A SN Ryt GO R Ay At A S e Ay gt e SR R AT A,
IS NN e e e A e ol BRI PRI N : AT,

R N R R A R AN N

as
proved_dlagnosls(voltmeter.Part.open_clrcufﬁﬂ ?.pcn clreut).

askif{same).

E X X

hpgiiay
- -

1 -

T ET i

e L P,

Can e

&

- -

)
9

L2

L]
o W o g W Wy « g @ . » P -, -
o, m&%&mﬂ‘- Do E_‘S’E\ SN T T AT A T e T A e T e e o T e
. T A R N I S S S

Wa¥ s SoVm" e 1 A VA s y d
- - - - - - -,. --h --. -

e - -

%THE FOLLOWING CONTAINS THE CONTENTS OF STARTER FILE.

list_of_expected_diagnosis(ignition_switch,
[broken_ignition_switch_connections]).
list_of_expected_diagnosis(magnetic_switch,
[improperly_functioning_magnetic_switch]).
list_of_expected_diagnosis(starter_solenoid,
[malfunction_in_starter_solenoid]).
list_of_expected_diagnosis(starter_unit.
[malfunction_in_starter_unit]).

recommended([electrical_testl,electrical_test2],ignition_switch,
broken_ignition_switch_connections).
recommended([electrical_test],magnetic_switch,
improperly_functioning_magnetic_switch).
recommended([electrical_test},starter_solenoid,
malfunction_in_starter_solenotd).
recommended{[symptom(slow_cranking).symptom(starter_spins_free),
symptom(early).deductive_reasoning],starter_unit,
malfunction_in_starter_unit).

preconditions(electrical_testl,ignition_switch,
broken_ignition_switch_connections,
[fact(starter_doesnt_turn_at_all),not(defective(battery)),
(askifthas(test_lamp_12V)):not(unable_to_use(voltmeter)))]).
preconditions(electrical_test2.ignition_switch,
broken_ignition_swith_connections,
[fact(starter_doesnt_turn_at_all),not(defective(battery)),
(askifthas(test_lamp12V)):not(unable_to_use(voltmeter)))]).
preconditions(electrical_test.magnetic_switch,
improperly_functioning_magnetic _switch,
[fact(starter_doesnt_turn_at_all),
not(diagnosis(broken_ignition_switch_connctions)),
askiflhas(jumper)))).
preconditions(electrical_test.starter_solenoid,
malfunction_in_starter_solenoid,
[fact({starter_doesnt_turn_at_all).not(defective(battery)),
not(electrical circuit problem),askifthas(jumper))}).
preconditions(symptom(slow-cranking),starter-unit,
malfunction_in_starter_unit.
[fact(slow_cranking.not(defective(battery)).
not(high_resistance_in_engine))).
preconditions(symptom(starter_spins_free),starter_unit.
malfunction_in_starter_unit.
[fact(starter_turns_but_not_the_engine), askif(starter_spins_free)l).
preconditions(symptom(early),.starter_unit,
[fact(starter_turns_but_not_the_engine).not(high_resistance_in_engine)}).

preconditions(deductive_reasoning,starter_unit,
malfunction_in_starter_unit,
[fact(starter_doesnt_turn_at_all),not(defective(battery)),
not(electrical_circuit_problem),
rest_of_okay{starting_system)]).

3
3
X

.....

iy rest_of_okay(starting_system) :-
K not(diagnosis(broken_ignition_switch_connections}).
not(diagnosis(improperly_functioning_magnetic_switch}),
{:‘. not(diagnosis(malfunction_in_starter_solenoid)),
W assr .ta(rest_of_okay(starting_system)).
W
ﬁ'" questioncode(lamp_lights.$Did the lamp light or meter needle
’ move, when the switch is turned$).
~ questioncode(lamp_flickers,$Did the lamp flicker or meter needle
Wyl move,when the key jiggleds$).
o questioncode(starter_spins_free.$Is that your problem;
' starter spins free but won't engage$).
:0.. questioncode(starter_operates,$Did the starter operate$).
N questioncode(response_recorded,$Did the starter turn the engine
either normally or slowly or buzz$).
e code(magnetic_switch.$An electrically operated switch whose only function
TS is to make contact for the starter.May be located on
- the starter.on the engine side of firewall, or on the
&) fender apron.$.$No more$).
" code(starter_solenoid.$An electrically operated whose function Is to make

electrical contact the the starter.and in addition
A shift the starter clutch into mesh with the flywheel.
Always located on the starter.$.8No more$).
:: code(starter_unit,$Always located either on right or left side of engine very
P close to the bottom.$.No mores$).
: code(100.8Check the ignition switch for loose connections,
cracked insulation, or broken wires.$,
$Connect a 12V test lamp or voltmeter between the
starter post of solenoid and ground. Turn the ignition ,
switch to the "start” position and jiggle the key.8).
code(200.8Determine whether the magnetic switch is functioning
properly.$,
$By connecting a jumper across the switch and
turning the ignition switch to start.$).
code(300,$Test the starter solenoid.$.
$Connect a jumper from the battery post of
solenoid to the starter post of solenoid.$).

P
IE$

-
L)
a3 20 VN4

ﬂ%'lj')

E ek B R

get_ready_equipment(Test.ignition_switch,
broken_ignition_switch_connections) :- code_interpreter{100)}.
get_ready_equipment(electrical_test.magnetic_switch,
improperly_functioning_magnetic_switch) :- code_interpreter{200).
get_ready_equipment(electrical_test.starter_solenoid.
malfunction_in_starter_solenoid) :- code interpreter{300).
get_ready_equipment(Symptom,starter_unit,
malfunction_in_starter_unit).

A
)

Y Al 5

proved_diagnosis(electrical_testl.ignition_switch,
broken_ignition_switch_connections) :- askifnot(lamp_lights).

proved_diagnosis(electrical_test2,ignition_switch,
broken_ignition_switch_connections) :- askif{lamp_flickers).

proved_diagnosis(electrical_test,magnetic_switch,

RNALA NS

= m s AV

t
)
!

........ N S A S g e e AL W WA
o Y 200 gl

- . RN
LT S TP VAW 8 ST VI DTy g s

improperly_functioning_magnetic_switch) :

askifistarter_operates).
proved_diagnosis(electrical_test,starter_solenoid,
malfunction_in_starter_solenoid) :-

askifnot(response_recorded).
proved_diagnosis(System,starter_unit,

malfunction_in_starter_unit).

{ “ R T R S R N S G R R
B AN L AT A AT T AN N AT B T N 7 N TN N S N LN S N e e S Y e

»

R

“

) % F N FILE.
L)

¢ "

’,::' list_of_expected_diagnosis(sub_diagnosis.

[defective(ignition_system) defective(primary_circuit_coil_side),
. defective(primary_circuit_distributor_side)}).
) list_of_expected_diagnosis(ignition_points,
Z!',: [burned_or_damaged(ignition_points),
A out_of_adjustment(ignition_points)]).
list_of_expected_diagnosis(condenser,[defective(condenser))).
) ’ list_of_expected_diagnosis(ballast._resistor,

[defective(ballast_resistor)]).
list_of_expected_diagnosis(ignition_switch,

(defective(ignition_switch)]).
list_of_expected_diagnosis(ignition_cotl,

[defective(coil_primary_resistance),
defective(coll secondary_resistancel))).
N list_of_expected_diagnosis(plugs.|defective(spark plugs)])

list_of_expected_diagnosis(distributor,[poor {distributor_ground),
.‘-: defective(distributor_rotor), moisture_on(distributor_cap),
l‘.‘ cracked_or_tracked(distributor_cap).
) defec_ive(listributor_wires_or_ignition_plugs))).
:‘.:' list_of_expected_diagnosis(complete system,
]
LN

[induction_firing_of_cyclinders
incorrect(distributor_firing_sequence),

o incorrect{ignition_timing)]).
& recommended([spark_test].sub_diagnosis.defective(ignition_system)).
_"| recommended([voltmeter_test1,voltmeter_test2]|,sub_diagnosis,
A defective(primary_circuit_coil_side)).

recommended({voltmeter}.sub_diagnosis,
defective(primary_circuit_distributor_side)).

& recommended([visual_inspection].ignition_points,

":. burned_or_damaged(ignition_points)).
Y recommended([visual_inspection.dwell_meter].ignition_points,

b4 out_of_adjustment(ignition_points)),

o recommended([voltmeter],ballast_resistor,

defective(ballast_resistor)).

. recommended([voltmeter}.condenser,defective(condenser)).
N, recommended([electrical_test].ignition_switch,

» defective(ignition_switch)).
A recommended([voltmeter],ignition_cotil.
! 1 defecttve(cotl_primary_resistance)).
'+ recommended([voltmeter],ignition_coil,

) defective(coil_secondary_resistance)).
- recommended([visual_inspection].plugs.defective(spark_plugs)).

< recommended({jumper].distributor, poor{distributor_ground)}.

] recommended([visual_inspection].distributor,
fo defective(distributor_rotor)).
i :: recommended([hypothesis(moisture_on{distributor_cap))].

s distributor,moisture_on(distributor_cap}).

recommended(visual_inspection].distributor,

”~ cracked_or_tracked(distributor_cap)).
. recommended([visual_inspection].distributor,

" defective(distributor_wires_or_ignition_plugs)).

-
b

RO Sl Sol Aol Aul Sl L AR

recommended(try_to_check],complete system,
induction_firing_of_cyclinders}.
recommended ([try_to_check].complete_systemn,
incorrect(distributor_firing_sequence)).
recommended([test_light], complete_system,
incorrect(ignition_timing)).

preconditions(spark_test,sub_diagnosis,
defective(ignition_system).{]).
preconditions(voltmeter_test1.sub_dijagnosis,
defective(primary_circuit_coil_side),
[not(diagnosis(defective(ignition_switch))),askif(has(jumper)),
not(unable_to_use(voltmeter))]).
preconditions(voltmeter_test2,sub_diagnosis,
defecttve(primary_circuit_coil_side)
not(diagnosis(defective ignition_switch))).askif(has(jumper)).
not(unable_to_use(voltmeter)}]).
preconditions(voltmeter,sub_diagnosis,
defective(primary_circuit_distributor_side),
[not(diagnosis(defective(ignition_switch))),
not(diagnosis(burned_or_damaged(ignition_points))).

not(unable_to_use(voltmeter))]).
preconditions(visual_inspection.ignition_points
burned_or_damaged(ignition_points),{]).
preconditions(visual_inspection.ignition_points,
out_of_adjustment(ignition_points),[]).

preconditions(dwell_meter.ignition_points,
out_of_adjustment(ignition_points),[not(fact(engine_wont_start)),

not(unable_to_use(dwell_meter))]).
preconditions(voltmeter ballast_resistor,
defective(ballast_resistor),[not(unable_to_use_(voltmeter))]).
preconditions(voltmeter,condenser,defective(condenser),
[not{unable_to_use(voltmeter))]).
preconditions(electrical_test.ignition_switch,
defective(ignition switch),[(askiflhas(test_tamp_12V));
not(unable_to_use(voltmeter)))]).
preconditions(voltmeter,ignition_coil,
defective(coll_primary_resistance),
[not{unable_to_use(voltmeter))]).
preconditions(ohmmeter,ignition_coil,
defective(cotl_secondary_resistance).
[not(unable_to_use(ochmmeter))]).
preconditions(visual_inspection,plugs,defective(spark_plugs).[)).
preconditions(jumper,distributor,poor(distributor_ground),

{askifthas(jumper)))).
preconditions (visual_inspection.distributor,
defective(distributor_rotor).[)]).
preconditions(hypothesis(moisture_on(distributor_cap)),
distributor.moisture_on(distributor_cap).
{hypothesis(moisture_on(distributor_cap))l).
preconditions(visual_inspection.distributor,

cracked_or_tracked(distributor_cap).(}).

preconditions(visual_inspection,distributor,

ALl LWL LN

I _v_v)

YWYV IV Ty
o . b et D r r
B W ¥ N R ATV AV N \J WU it WY h hapin g4 o i g% A4 -

"
)
\J
::r defective(distributor_wires_or_ignition_plugs).{]).
.:: preconditions(try_to_check.complete_system,
4 induction_firing_of_cylinders,[]).
W preconditions(try_to_check.complete_system,
incorrect(distributor_firing_sequence).(]}.
" preconditions(test_light,complete_system,
¢ incorrect(ignition_timing).
& [not(diagnosis(out_of_adjustment(ignition_points))).
& not(unable_to_use(test_light))]).
|'| .
" hr :- not(hypothesis(defective(spark_plugs))).fact(hard_starting),
. fact{misfire_under_load).asserta(hypothesis(defective(spark_plugs))).
Q hr :- not(hypothesis(defective(spark_plugs))).fact(hard_starting),
L) fact(poor_pick_up).asserta(hypothesis(defective(spark_plugs))).
@ hr :- not{hypothesis(defective(spark_plugs])),
» askifihear(detonation)),
by hasserta(hypothesls(defectxvc:(spark _plugs))).
r:-
“ not(hypothesis(defective(distributor_wires_or_ignition_plugs))),
) fact(hard_starting) fact(poor_pick_up),
..::' asserta(hypothesis(defective(distributor_wires_or_ignition_plugs))).
o hr :- not(hypothesis{defective(condenser))),
:0'. diagnosis(burned_or_damaged(ignition_points)).
s asserta(hypothesis(defective(condenser))).
a hr :- not(hypothesis(induction_firing_of_cylinders)).
f: (fact(backfire_through_the_exhaust);fact(backfire_through_the_carburetor)),
) fact(rough_idle),askiflhear(detonation)).
2 asserta(hypothesis(induction_firing_of_cylinders)).
e hr :- not{hypothesis(incorrect(distributor_firing_sequence))),
.- fact(hard_starting).fact(backfire_through_the_carburetor),
L askif(recent_operator_job),
o, asserta(hypothesis(incorrect(distributor_firing_sequence))).
2% hr :- not(hypothesis(poor{distributor_ground))).
v, fact(hard_starting),
' (fact(misfire_under_load);fact(engine_miss_at_high_rpm)).
asserta(hypothesis(poor{distributor_ground))).
' hr :- not(hypothesis(incorrect(ignition_timing))),
N askif(hear{detonation)).
4 asserta(hypothesis(incorrect(ignition_timing))).
f ‘: hr :- not(hypothesis(defective(coll_secondary_resistance))).

fact(hard_starting),.(fact(misfire_under_load);

fact(engine_miss_at_high_rpm)).

- asserta(hypothesis(defective(coil_secondary_resistance))).

2 hr :- not(hypothesis(moisture_on(distributor_cap))),
(fact(engine_wont_start);fact(hard_starting)).

. {askif(high_level_of_moisture_in_atmosphere);

A askif(wash_recently)),

3 asserta(hypothesis(moisture_on(distrtbutor_cap))).

hr :- not(hypothesis(cracked_or_tracked(distributor_cap))).
fact(hard_starting).fact(susceptible_to_moisture),

- . . - U
Yo e Ta T 2 v e T

=, - Cf Pl oI "oy oy w w e Ve W Wy ™ -y W g VWY
o A e B R O R ARy e g T RS LSO A AL

asserta(hypothesis(cracked_or_tracked(distributor_cap))).

hr :- not(defective(ignition_system)) fact(engine_wont_start),
e diagnosis(defective(ignition_system)),

- retract_sub_diagnosis(defective(ignition_system)),

o asserta(defective(ignition_system)).

P s hr :- not(hypothesis(defective(coil_secondary_resistance))),
Ay defective(ignition_system),

k: asserta(hypothesis(defective(coil_secondary_resistance})).
. hr :- not(defective(primary_circuit_coil_side)).

defective(ignition_system),
. diagnosis(defective(primary_circuit_coil_side)),

; retract_sub_dtagnosis(defective(primary_circuit_coil_side)).
. assert_hypothesis(defective(ballast_resistor)).
. assert_hypothesis(defective(coil_primary_resistance)),
Iy asserta(defective(primary_circuit_coil_side)).
N hr :-not(defective(primary_circuit_distributor_side)).
defective(ignition_system),
s diagnosis(defective(primary_circuit_distributor_side)),
hy retract_sub_diagnosis(defective(primary_circuit_distributor_side)).

assert_hypothesis(defective(condenser)).

. assert_hypothesis(out_of_adjustment(ignition_points)),
* assert_hypothesis(defective(distributor_rotor)),

2 asserta(defective(primary_circuit_distributor_side)).

assert_hypothesis(Hypothesis) :- hypothesis(Hypothesis).
assert_hypothesis((Hypothesis) :- not(hypothesis(Hypothesis)),
asserta(hypothesis(Hypothesis)).

retract_sub_diagnosis(Diagnosis) :- repeat,
retract(proved(diagnosis(Diagnosis,Equipment))),
not{proved(diagnosis(Diagnosis,Equip))).!.

questioncode(recent_operator_job,
$Has any operator job recently been done on ignition systems$).
’i questioncode(high_level_of_moisture_in_atmosphere,
1 $Do you observe a high level of moisture in the atmosphere$).
i questioncode(wash_recently,$Have you washed the car recently$).
” questioncode(good_spark,$Is the spark good and consistent$).
§ questioncode(voltage_for_voltmeter_test1.$
With ignition switch on, did the voltmeter show 5.5 to 7 volt$).
questioncode(voltage_for_voltmeter_test2,
$While cranking, did the voltmeter show around 9 volts$).
w questioncode(voltmeter_reading remains_zero.$While cranking,
. did the voltmeter reading remain zero or close to it$).

] questioncode(burned_or_damaged(ignition_points),

) $Did you observe burned or damaged ignition points$). i
- questioncode(out_of_adjustment(ignition_points),

o $Did you note excessive open or close gap between points$).)
N questioncode(excessive_variation_in_dwell,

$Do you note an excesstve variation in dwell.(over3 deg)

................................

M as the speed is increased$).

P questioncode(zero_resistance.$Is the resistance zero$).

3 questioncode(shows_other_than_infinte,

$Did you note any reading other than infinite$).
questioncode(lamp_donot_flicker_but_light.$Did the lamp light$).

,:, - questioncode(read_lohm_resistance,8Did you read about 1 ohm$).

W questioncode(between4and8.$Is the reading between 4K and 8K ohms$).
. questioncode(burned(spark_plug_pointsj,

W $Did you note burned spark plug points$).

KX questioncode(change_something,$Did it change something$).

) questioncode(rotor_turns_appropriately,

- $Does the rotor turn appropriately with no loosened components$).

3 questioncode(cracked_or_tracked(distributor_cap).

$Do you notice cracked or tracked distributor cap or component$).

questioncode(defective_ignition_wires,
$Do you observe any cracked, burned, or broken insulation$).

L questioncode(induction_firing.$Do you note any consecutive wires
causing induction firing$).
o questioncode(missing cylinder.$Do you identify any missing one$).
) questioncode(flash_light_intermittently.$Does the light flash intermittently$).
". questioncode(unfixed_at_constant_engine_speed.
;:" $Does the pointer appear to move on the index scale$).
\
¢ code(ignition_points,
u $Ignition points are located inside the distributor under the
o) distributor cap.$,8No more$).
_‘: code(condenser,$Condenser is located inside the distributor
29 under the distributor cap.$.$No more8$).
> code(ballast_resistor,$Ballast resistor lies between the ignition
. - coil and ignition switch.8$.$No more$).
code(ignition_coil.
$Always located very close to engine.$.$No more$).
vy code(plugs,8Spark plugs are located on the engine connected to
v distributor by ignition wires.$,8No more$).
- code(distributor,$Distributor is one of the major components of the
A ignition system.$,8Which is located close to the engine.$).
[}
W code(1000,
", $Check for spark at the coil high tension lead.$,
$Remove the coll high tension lead from the distributor and
D position it approximately 1/4" from ground. Crank the engine

and observe the spark . $).
code(2000.8With engine at operating temperature, but stopped.
) and the distributor side of the ignition coil grounded with a
Y jumper wire, hook up a voltmeter between the ignition coil
! (switch side) and a good ground.$.$No more$).

Y
S
¥ code(3000,8With the voltmeter on the 16-20 volt scale. connect
: one voltmeter lead to the distributor side of the coil. Remove
Yy the high tension wire from the cotl and ground it. Close ignition
o switch and slowly bump the engine to open and close the points.$,
Y $No more$).
.(; . code(4000.8Visually inspect the ignition points.$,8For burned.
l'.
Ky
ot
.

!lu -’- -r—'_ -*ll'...'.h - S ey RGN ’ f.f_ 'l"\"': |

i} o o A *0a® Ba’ Ba? Ba®
R od. van ‘a8 ‘ab. Al Aia B B ha B 0, ‘ate &% B, r) vy N .
WO WL PR AR .80, 4 Yol Y2l Yol ‘2t Sa8 af “al tat e Vpl Tol 2l U LY o ? ! A A

R
;: damaged, or out-of-adjustment points.$).
e code(5000,
'y $Perform the dwell meter test according to manufacturer's
* specifications.$,$No more$).
code(6000,
A $Check the ballast resistor or resistor wire for an
. open circuit, using an ohmmeter.$,$No more$).
3 code(7000,8Check the condenser for short.$.$Connect an ohmrmeter
K across the condenser body and the pigtail lead.$). ,
. code(8000,$Check the ignition switch "on" position.$,
$Connect a jumper wire between the distributor side of the coil d
. and ground, and a 12V test lamp between the switch side of the
“ coil and ground. Remove the high tension lead from the coil. Turn \
v the igntion switch on and jiggle the key.$). '
1] code(9000,$To check ignition coil resistance, primary side,
W switch ohmmeter to low scale. Connect the ohmmeter leads across
" the primary terminals of the coil and read the low ohms scale.$, »
$No mores).]
) code(9100,8Check the ignition coil secondary side resistance.$,
':" $Switch ohmmeter to high scale, connect one test lead to the
I distributor cap end of the coil secondary cable, connect the X
* other test lead to the distributor terminal of the coil.$),
y code(9200,8Remove the spark plugs.$.$Noting the cylinders from
. which they were removed.$).
E code(9300,$Connect a jumper wire between distributor body and a
Wy good ground.$,$No more$).
e code(9400,$Remove the distributor cap and check to make sure that
D the rotor turns when the engine is cranked. Visually inspect the
distributor components.$,8No more$). ; "

code(9500,8Inspect the distributor for cracked or tracked
distributor cap or components.$.$No more$).

’ code{9600,8Visually inspect the spark plug wires for cracking or
brittleness.$,$Spark plug wires can be checked visually by

bending them in a loop over your finger.$).

code(9700,$Ensure that no two wires are positioned so as to cause -

induction firing,$.$Misfiring can be the result of spark plug

leads to adjacent, consecuttvely firing cylinders running parallel

and too close together.$).

»
" te
vos s o am RA

A2 E

code(9800,$Locate an ignition miss,$,$With the engine running, .
remove each spark wire, one at a time. until one is found that :
doesn't cause the engine to roughen and slow down.$).

code(9900,$Perform the ignition timing according to .
manufacturer's specification.$,$No more$).

-

A

get_ready_equipment(spark_test,sub_diagnosis,
defective(ignition_system)) :- code_interpreter(1000).

get_ready_equipment(Voltmeter_test,sub_diagnosis, 4
defective(primary_circuit_coil_side)) :- code_interpreter{2000).
get_ready_equipment(voltmeter,sub_diagnosis, . A
'y defective(primary_circuit_distributor_side)) :- .
N code_interpreter{3000).
3 get_ready_equipment{visual_inspection,.ignition_points.

y burned_or_damaged(ignition_points)) :-

<

ALLEL aind

9 S0 °F

-

"

(]
L

" " - - - - - - - - - -
L R L S AV R Y A VR A, T Yy W S Y Iy STy 70 3 R L L A S S A A LT)

b
R
;: code_interpreter(4000).
ty get_ready_equipment(visual_inspection,ignition_points,
" out_of_adjustment(ignition_points)) :-
code_interpreter(4000).
::: get_ready_equipment(dwell_meter.ignition_points,
W out_of_adjustment(ignition_points)) :-
o code_interpreter(5000).
f.:: get_ready_equipment(voltmeter, ballast_resistor,
. defective(ballast_resistor)) :-
code_interpreter(6000).
.:; get_ready_equipment(voltmeter, condenser, defective(condenser)) :-
:.o'. code_interpreter{7000).
- get_ready_equipment(electrical_test.ignition_switch,
X defective(ignition_switch)) :-
:5 code_interpreter(8000).
e get_ready_equipment(voltmeter, ignition_cotl,
:'. defective(cotl_primary_resistance)) :-
‘. code_interpreter{9000).
;s get_ready_equipment(voltmeter, ignition_cotl,
N defective(coil_secondary_resistance)) :-
W code_interpreter{9100).
get_ready_equipment(visual_inspection,plugs,
g defecttve(spark_plugs)) :-
Y code_interpreter(9200).
»:l get_ready_equipment(jumper.distributor.poor(distributor_ground))
Y :- code_interpreter(9300).
N get_ready_equipment(visual_inspection.distributor,
; defective(distributor_rotor)) :-
. code_interpreter{9400).
’ get_ready_equipment(hypothesis(moisture_on_distributor_cap)). ~
"j distributor,moisture_on{distributor_cap)). [
- get_ready_equipment(visual_inspection.distributor,
g cracked_or_tracked(distributor_cap)) :- code_interpreter(9500).
¥ get_ready_equipment(visual_inspection distributor,
defective(distributor_wires_or_ignition_plugs))
* :- code_interpreter{9600).
} get_ready_equipment(try_to_check.complete_system,
o) induction_firing_of_cylinders) :-
o code_interpreter{(9700).
‘:',‘ get_ready_equipment(try_to_check.complete_system,
i incorrect(distributor_firing sequence)) :-
code_interpreter{(9800).
get_ready_equipment(test_light.complete_system,
e incorrect(ignition_timing)) :-
" code_interpreter(9900).
»
)
< proved_diagnosis(spark_test,sub_diagnosis,
Y defective(ignition_system)) :-
I~ askifnot(good_spark).
o proved_diagnosis(voltmeter_testl.sub_diagnosis,
K. defecttve(primary_circuit_cotl_side)) :-
S
ke 1
y o~
. 1.
L
0 f

e e e e esesroon]
AR R R T R I N S IR S e (.F(.‘Jf{f{‘.lq"-’{'fﬂ.ff RO T G (NP A

W e
w B%s 1% §% W9, 8%

P askifnot(voltage_for_voltmeter_test1).
) proved_diagnosis(voltmeter_test2,sub_diagnosts,
e defective(primary_circuit_coil_side)) :-
askifnot(voltage_for_voltmeter_test2).
proved_diagnosis(voltmeter.sub_diagnosis,
defective(primary_circuit_distributor_side)) :-
(N askifnot(voltmeter_reading remains_zero).
.;n proved_diagnosis(visual_inspection.ignition_points,
Y burned_or_damaged(ignition_points})) :-
askiflburned_or_damaged(ignition_points)).
proved_diagnosis(visual_inspection,ignition_points,
o out_of_adjustment(ignition_points)) :-
. assert_hypothesis(incorrect{ignition_timing)).
:., proved_diagnosis(dwell_meter.ignition_points,
! out_of_adjustment(ignition_points)) :-
askif{excessive_variation_in_dwell),
) assert_hypothesis(defective(distributor_rotor)).
assert_hypothesis(defective(coil_primary_resistance)),
oW assert_hypothesis(defective(coil_secondary_resistance)),
assert_hypothesis(incorrect(ignition_timing)).
& proved_diagnosis(voltmeter,ballast_resistor,
1y defective(ballast_resistor)) :-
M askif(zero_resistance).
B proved_diagnosis(voltmeter.condenser.defective(condenser)) :-
askif(shows_other_than_infinite).
proved_diagnosis(electrical_test,ignition_switch,
defective(ignition_switch)) :-
askifnot(lamp_donot_flicker_but_light).
proved_diagnosis(voltmeter.ignition_coil.
defecttve{coll_primary_resistance)) :-
askif{read_lohm_resistance).
proved_diagnosis(voltmeter.ignition_coil,
defective(coil_secondary_resistance)) :-
askifnot(between4ands).
proved_diagnosis(visual_inspection, plugs defective(spark_plugs))
:- askdflburned(spark_plug_points)),
’ assert_hypothesis(defective{condenser)).
proved_diagnosis(jumper,distributor,poor{distributor_ground)) :-
A askif{change_something).

n.JJ.J’))J'

Sl

. proved_diagnosis{visual_inspection.distributor,
N defective(distributor_rotor)) :-
Ca askifnot(rotor_turns_appropriately).

: proved_diagnosis(hypothesis(moisture_on(distributor_cap}).
distributor,moisture_on{(distributor)cap}).

proved_diagnosis(visual_inspection.distributor,
cracked_or_tracked(distributor_cap)) :-
askiflcracked_or_tracked(distributor_cap)).
proved_diagnosis(visual_inspection.distributor,
defective{distributor_wires_or_ignition_plugs)) :-
askif(defective_ignition_wires).
proved_diagnosis(try_to_check.complete_system,
fnduction_firing of_cylinders) :-

A Yl g]

- -

PR B A LA

P

T N A T T e R,

O L WU U TN R W U IO RV R v st TR [ta-pe Bia SRS lte i e e S R Ad Ml D At i aet b s bt Bt B ettt 4

e askif(induction_firing).

o) proved_diagnosis(try_to_check.complete_system,

Rt incorrect(distributor_firing_sequence)) :-
askif{missing_cylinder).

'u‘. proved_diagnosis(test_light . complete_system

n incorrect(ignition_timing)) :-

M askififlash_light_intermittently).

o) assert_hypothesis(poor{distributor_ground)),

assert_hypothesis(cracked_or_tracked(distributor_cap)).

assert_hypothesis{defective(distributor_rotor)).

. proved_diagnosis(test_light.complete_system,

s incorrect(ignition_timing)) :-

0. askif(unfixed_at_constant_engine_speed),

g assert_hypothests(defective(distributor_rotor)).

-

v

£oancs

)
Y
@

~
n
N

AR
»

@ - " " By RN - - -~ U
A St AT T A N T A L AT T A AT o L AT N T N -8
h Mol o Bl A O Gt il ’

an: - .y . TR TTYY) oy
. gy tad vad Vot @ ; N g NV a¥in B e T a e T Wy W W e Wan v w wim w W W\ e AR R Ut 4

N
~ .
b
LA
i
THE FOLLOWING CONTAINS THE CONTENTS OF ENGINE FILE.
. %
0:' A list_of_expected_diagnosis(complete_system,
a2 [high_resistance_in_engine]).
o recommended([torque_test].complete_system,
p high_resistance_in_engine).
' preconditions(torque_test.complete_system,
:‘ high_resistance_in_engine,
,. [askiflhas(torque_tool))]).
W get_ready_equipment(torque_test.complete_system,
high_resistance_in_engine) :-
% code_interpreter(10500).
X proved_diagnosis(torque_test,complete_system,
: high_resistance_in_engine) :-
",,' askifnot(able_to_turn).
b
' high_resistance_in_engine :- diagnosis(high_resistance_in_engine),
asserta(high_resistance_in_engine).
it
:'::t: questioncode(able_to_turn,$Could you turn the engine freely$).
At code(10500,8Attach the torque tool to front crank wheel of motor,
W and try to turn it by power.$.8No more$).
\
)
0
[
)
-
o
v
%
’
K
Wy
[
o
z. 0
i
W
:l
W
o
“
2
I} (.
x5
1
",) 4
d [
‘)
w {
y]
L
N)
N . e . i N Y B i LW L e W T M T T T N
By ' 3, l‘. c'l' ' . n'l‘. e ”

N
S
™
]
o
R
' APPENDIX B
s
SAMPLE USER SESSIONS
/
:‘ : /““l."..‘t.“tt‘t.“‘.l.‘i-tt“..““/
& Actual responses given regarding the vehicle
e under consideration have been simulated
L
o throughout the sample consultations.
f /“-".t“.t.““-‘tt“““‘t.‘.tttttitt/
4
| CONSULTATION #1:
iy
bl >api
3 Arity/Prolog Interpreter Version 4.0
Copyright (c) 1986 Arity Corporation)
?-[globall. -
)
.' VEHICLE DIAGNOSIS EXPERT SYSTEM IMPLEMENTATION
ke
Please enter “diagnosis” to start the consultation.
» i
'_E yes
» ?-diagnosis.
N
w 1: Does the engine start at all?
2: Does the engine run poorly?
Yy Give numbers of questions whose answer is yes.[1].
u 1: Does starter turn at all?
7 2: Does starter turn, but not the engine?
] 3: Does starter turn the engine very slowly?
5 4: Does starter tum the engine normally?
7 Give numbers of questions whose answer is yes.[1].
-
- 1: Does starter turn the engine very quickly?
‘ 2. Does the engine fire intermittently?
. 3: Does the engine fire consistently?
o Give numbers of questions whose answer is yes.|].
g
’,
L7
A
A
!
h{
, Y A L G At W, N 2 N O AT A A AN R A N AN AN T IR,

¢ BATTERY SECTION *
Do you know where the battery is? (yes/no) ==>y.

Inspect the battery case.
Do you need further explanation? (yes/no) ==> n.

Is the battery case cracked? (yes/no) ==> n.
Is the battery case intact? (yes/no) ==> n.
Did the light come on when the knob turned on? (yes/no) ==>y.

Turn lights on high, try starter, and note action of lights.
Did the lights dim considerably or go out? (yes/no) ==> n.

Do you have a hydrometer? (yes/no) ==>y.
Do you know how to use a hydrometer? (yes/noj) ==>y.

Test the state of charge of the battery using the hydrometer.

Does it indicate less than 1.140 @? (yes/no) ==> n.
Do you know where the battery cable connection is? (yes/no) ==>y.

Inspect the battery cables.
Do you need further explanation? (yes/no) ==>y.

(LS AR

For loose, broken, open cables and connections:

Did you notice bad cables or connections? (yes/no) ==> n.
Did you notice an open connection? (yes/no) ==> n.
Do you have a voltmeter? (yes/no) ==>y.
Do you know how to use a voltmeter? (yes/no) ==>y.

et [l el

Connect prods of voltmeter on 3-volt scale to grounded battery post
and starter motor housing. Close the starter switch and note the
voltmeter reading.

Is the reading the same as the battery reading? (yes/no) ==>y.
MOST LIKELY DIAGNOSIS LIST:

LESS LIKELY DIAGNOSIS LIST:
Open circuit

yes
7.

Wi WO f‘\f..f "~ -
. L)

CONSULTATION #2:

>api

Arity/Prolog Interpreter Version 4.0
Copyright (c) 1986 Arity Corporation
?-[globall].

VEHICLE DIAGNOSIS EXPERT SYSTEM IMPLEMENTATION
Please enter “diagnosis” to start the consultation.

yes
?-diagnosis.

1. Does the engine start at all?
2: Does the engine run poorly?
Give numbers of questions whose answer is yes.[1].

1: Does starter turn at all?

2: Does starter turn, but not the engine?
3:

4:

G

Does starter turn the engine very slowly?
Does starter turn the engine normally?
ive numbers of questions whose answer is yes.[3).

1: Does starter turn the engine very quickly?

2: Does the engine fire intermittently?

3: Does the engine fire consistently?

Give numbers of questions whose answer is yes.[].

*** STARTER SECTION ***

*** LOADING BATTERY SECTION ***

Do you know where the battery is? (yes/no) ==>y.

Inspect the battery case.
Do you need further explanation? (yes/no) ==> n.

Is the battery case cracked? (yes/no) ==> n.
Is the battery case intact? (yes/no) ==> n.
Did the light come on when the knob turned on? (yes/no) ==>y.

Turn lights on high, try starter, and note action of lights.

N Did the lights dim considerably or go out? (yes/no) ==>y.
: Did you hear a sound like a clattering? (yes/no) ==> n.
Rl Do you have a hydrometer? (yes/no) ==>y.
. Do you know how to use a hydrometer? (yes/no) ==>y.
)

§;‘ Test the state of charge of the battery using the hydrometer.

"E" Does it indicate less than 1.140 @7? (yes/no) ==> n.
un **+ UNLOADING BATTERY SECTION ***

o **+* LOADING ENGINE SECTION ***

Attach the torque tool to the front crank wheel of the motor, and try
to turn it by power.

» Could you turn the engine freely? (yes/no) ==>y.
5
N

::.',' *+** UNLOADING ENGINE SECTION **¢

& MOST LIKELY DIAGNOSIS LIST:

."'
.:,' LESS LIKELY DIAGNOSIS LIST:
™ Malfunction_in_starter_unit
o yes

?-

N

o

<.

.

<8

N

e

3 i
ke

4

LSS 58 %
1
PN WSSV SRR « S L Y he & = W W WY ya

a4
-

o

Py A & R P N . o o oy - vy
. N g PPy ‘el Y fa .. T YW VeV - LRk W
4'"~ YRe T 8y 8y 000 0% v) hall o] h . o R - - 2¥ s Yw

&

B

N

e CONSULTATION #3:

" >api

o Arity/Prolog Interpreter Version 4.0

':.,‘ Copyright (c) 1986 Arity Corporation

0 , ?-[global].

g |

s VEHICLE DIAGNOSIS EXPERT SYSTEM IMPLEMENTATION

] N Please enter “diagnosis™ to start the consultation.
N
N yes

?-diagnosis.

1: Does the engine start at all?
W 2: Does the engine run poorly?
' Give numbers of questions whose answer is yes.[1].

1: Does starter turn at all?
2: Does starter turn, but not the engine?
0 3: Does starter turn the engine very slowly?
4: Does starter turn the engine normally?
Give numbers of questions whose answer is yes.[2].

" 1: Does starter tum the engine very quickly?
< 2: Does the engine fire intermittently?
- 3: Does the engine fire consistently?
" Give numbers of questions whose answer is yes.[2].
o
I found a contradiction!
% Check and repeat your answer.
’ 1: Does starter turn at all?

.

.

N

*

N 2: Does starter turn, but not the engine?

> 3: Does starter turn the engine very slowly?

4: Does starter turn the engine normally?

Give numbers of questions whose answer is yes.[2].

. 1: Does starter turn the engine very quickly?
v 2: Does the engine fire intermittently?
3: Does the engine fire consistently?
' Give numbers of questions whose answer is yes.[].
::.
v
o

Wy $-‘ (I~I‘

Y~y T T T
O T T e e T T T T AN

*** STARTER SECTION ***

Is that your problem:
Starter spins icee but won't engage? (yes/no) ==> n.

*** LOADING ENGINE SECTION ***

Do you have a torque tool? (yes/no) ==>y.
Attach the torque tool to the front crank wheel of the motor, and try
to turn it by power.

Could you turn the engine freely? (yes/no) ==> n.

*+** UNLOADING ENGINE SECTION ***
MOST LIKELY DIAGNOSIS LIST:

LESS LIKELY DIAGNOSIS LIST:
High-resistance-in-engine

yes
2.

-
-
o
-
3
-
-
-
-
i
"
-
L
&
.
o
.
.
.
-
-
.
-
.
-
™
.
"
S
-
»
)
-
.
[}
-
[
'
\
3
)

.......................

. W -
e)

T

P
P
N w2

CONSULTATION #4:

>api
Arity/Prolog Interpreter Version 4.0

Copyright (c) 1986 Arity Corporation
?-(globall].

-
oo

VEHICLE DIAGNOSIS EXPERT SYSTEM IMPLEMENTATION
N Please enter “diagnosis” to start the consultation.

N yes
N ?-diagnosis.

' 1: Does the engine start at all?
N 2: Does the engine run poorly? '
Give numbers of questions whose answer is yes.[1]. -

1: Does starter turn at all?

2: Does starter turn, but not the engine?

3: Does starter turn the engine very slowly?

4: Does starter turn the engine normally? X
Give numbers of questions whose answer is yes.[4]. !

1: Does starter turn the engine very quickly?

2: Does the engine fire intermittently?

3: Does the engine fire consistently?

Give numbers of questions whose answer is yes.[2].

hipt Wt = 0%

P

*** IGNITION SECTION ***

Did you hear a sound like a detonation? (yes/no) ==> n.
Do you observe a high level of moisture in the

atmosphere? (yes/no) ==> n.
Have you washed the car recently? (yes/no) ==> n.

TP Mol

Check for spark at the coil high tension lead.)
Do you need further explanation? (yes/no) ==>y.

e,

Remove the coil high tension lead from the distributor and position it
approximately 1/4" from the ground. Crank the engine and observe
the spark.

Is the spark good and consistent? (yes/no) ==> n.

R o]

Do you have a test-lamp-12V? (yes/no) ==>y.

. ~ e)
-~ P N TN A VR L I TR TH 6 P T 1% | “\,\‘\v'h'-)'\-'\,\" .)
TN O I O R o o M MO X Wi, 2 Ll PN AN ol a) s) A

v Check the ignition switch “on” position.
Do you need further explanation? (ves/no) ==>y.

,. Connect a jumper wire between the distributor side of the coil and
¥ ground, and a 12V test lamp between the switch side of the coil and

’ ground. Remove the high tension lead from the side coil. Turn the
" ignition switch on and jiggle the key.
Did the lamp light? (yes/no) ==> n.
| Do you have an ohmmeter? (yes/no) ==>y.
» Do you know how to use an ohmmeter? (yes/no) ==>y.
p Do you know where the ignition—coil is? (yes/no) ==>y.
k)
' Check the ignition coil secondary side resistance.
. Do you need further explanation? (yes/no) ==>y.
)
':.' Switch ohmmeter to high scale, connect one test lead to the
’ distributor cap end of the coil secondary cable, connect the other test
h lead to the distributor terminal of the coil.
, Is the reading between 4K and 8K ohm? (yes/no) ==> n.
)
) MOST LIKELY DIAGNOSIS LIST:

LESS LIKELY DIAGNOSIS LIST:

defective(coil_secondary_resistance)
. defective(ignition_switch)

yes
?-

3 \). 4 i " 4 . L4 w7 -.u\u Y., - '\'~"~\'\"‘~ -‘.'.'. q\-"-.‘-\q..q“- LS
1 Pad] ..-"-.,'q.. Vaby -‘A‘.'»‘.'! N '.‘t.!.t o S0 U o P B o a -'0.- e, » o K' R W e b o L bo? i ol

YN

ALY

»
F
(o
»
-,
f

v PP O

— TICPTNTRETYO g 0 2. Y B L T TR W
‘.J‘u'l\‘Il‘l'rl"‘.' EXL N R” N a pia Bra Ste B e g% An Ao W - e -al ‘gAY a A r

B CONSULTATION #5:

i) .

;:; >ap1

i Arity/Prolog Interpreter Version 4.0
v Copyright (c) 1986 Arity Corporation
X ?-[globall.

s VEHICLE DIAGNOSIS EXPERT SYSTEM IMPLEMENTATION

L Please enter “diagnosis” to start the consultation.

e ?-diagnosis.

&

W 1: Does the engine start at all?

}:g‘ 2: Does the engine run poorly?

T Give numbers of questions whose answer is yes.[1,2].
% I found a contradiction!

Check and repeat your answer

o 1: Does the engine start at all?

b , 2: Does the engine run poorly?

A Give numbers of questions whose answer is yes.[2].

;
}Q’ 1: Do you have a hard starting problem?
b 2: Do you have a rough idle?
{ 3: Do you have stalling?
¥ 4: Does the engine die at high speed?
Give numbers of questions whose answer is yes.[1,2,4].
!..’
;f. 1: Do you have hesitation (on acceleration from a standing stop)?
o 2: Do you have poor pickup?
G 3: Do you have lack of power?
; 4: Do you have backfire through the carburetor?
7 Give numbers of questions whose answer is yes.[2].
b
v 1: Do you have backfire through the exhaust?
- 2: Do you have blue exhaust gases?
o 3: Do you have black exhaust gases?
- 4: Do you have running on (after the ignition is shut off)?
I Give numbers of questions whose answer is yes.[].
¥
-
X -

Al 1: Is it susceptible to moisture?
Rt 2: Does the engine misfire under load?
M 3. Does the engine misfire at speed?
4: Does the engine misfire at idle speed?
N Give numbers of questions whose answer is yes.[3].
!
1",
::‘.; **+ IGNITION SECTION ***
’!'l
- Did you hear a sound like a detonation? (yes/no) ==> n.
s Do you observe a high level of moisture in the
;;:: atmosphere? (yes/no) ==> n.
2 Have you washed the car recently? (yes/no) ==> n.
) Do you have a voltmeter? (yes/no) ==>y.
' Do you know how to use a voltmeter? (yes/no) ==>y.
::::' Check the ignition coil secondary side resistance.
K Do you need further explanation? (yes/no) ==>y.
e
:o':'_ Switch ohmmeter to high scale, connect one test lead to the
| distributor cap end of the coil secondary cable, connect the other test
! lead to the distributor terminal of the coil.
K Is the reading between 4K and 8K ohm? (yes/no) ==> n.
(0 MOST LIKELY DIAGNOSIS LIST:
N
; LESS LIKELY DIAGNOSIS LIST:
o defective(coil_secondary_resistance)
¥
. yes
1. i: ?'
:_“
S
-
2
2
fl
';.
W
.

- -

» o »
P

-

!'.
)

.l Y A . B B e . ‘ A o .‘f—
SRR W R W T, M A0 . e X X , a X

TV L WL T Y U N W W W

....

!

)

e

"

ﬂ

i

¥

s

B LIST OF REFERENCES

'.'

5n?

;

b

ﬂ 1. Waterman, . A., A Guide to Expert Systems, Addison-

% : Wesi=y Publishing Company, Inc., 1986.

! <. Buchanan, B. G., and Shortliffe, E. H., Rule-Based
Expert Systems: The MYCIN Experiments of the Stanford
Heuristic Programming Project, Addison-Wesley

8, Fublishing Company, Inc., 1984.

© 3. Arity/Prolog Version 4.0 Copyright 1986, CSA Press,

N Hudson, MA.

4...

.ﬁ 4. Forsyth, R., Expert OSystems: Principles and case

" studies, Chapman and Hall, 1984.

.l

- 5. Rowe, N., troducti t ifici telligenc

[Through Prolog, Prentice-Hall, 1988.

o'}

o

& 6. Reiter, R., A theory of Diagnosis from First

i Principles, Artificial Intelligence, V. 32, 1987.

' . 7 Kleer, J., and Williams, B. C., Dj in ultiple

n Faults, Artificial Intelligence, V. 32, 1987.

~

™ 8. Alexander, J. H., Freiling, M. J., eshootj with

, the Help of an Expert System, Technical Report No. CR-

w 85-05, Artificial Intelligence Dept, Computer Research

' Laboratory, Tektronix, Inc., August 1984.

.

o 9. Chilton’s Repair & Tune-up Guide: Chevy II and Nova

- 1962-79, Chilton Book Company, 1978.

b 10. Chi ' i ua -1971, Chilton Book
Company, 1971.

- 11. Clocksin, W. F., Mellish, C. S., Programming in Prolog,

;ﬁ Springer-Verlag, 1984.

;

.

)

-

f\

3..

.';' 73

)

b

k7

g"

e PR,
i R del

R A MR f_ . a0

o« Wy W W,
\n'

L Y

.\v _.- .' ' -$-\v LG -V ALY

Q]

BIBLIOGRAPHY

Sterling, L., Shapiro, E., The Art of Prolog, The MIT
Press, 1986.

Addis. T. R., Expert Systems: An Evolution in
Information Retrieval, International Computers Limited,
Technical Journal, May 1980.

Addis, T. R., Tow ‘Expert’ ia stic System,
ICL Technical Journal, May 13880.
Davis, R., Diagnostic Reasoning Based on Structure and
Behavior, Artificial Intelligence, V. 24, 1984.
Gensereth, M. R., The Use of Design Descriptions in
Automated Diagnesis, Artificial Intelligence, V. 24,
1984.

74

R OO AN Dy o v INDNN AT

INITIAL DISTRTBUTION LIST

A No. (‘opies
B

" L [zfen~2 Tacocnnical Information Center 2
’ Cameron Ztation

. Alexandria, Virginia 22304-v145

L 2. Library, Code (142 z
W Naval Postgraduate 3chool

:} Monterey, Califtornia 33943-5002

R 3. Department Chairman, Code 52 1
$ Department of Computer Science

" Naval Pnstgraduate Schonl

A Monterey, California 93943-5000

'

4. Associate Professor N. C. Rowe 1
o Code 52Rp

b - Department of Computer Scienne

=§‘ Naval Postgraduate School

fv. Monterey, California 93943-5000

D)

b 5. Professor Robert McGhee 1
o Code 52Mz

#_ ‘ Department. of Computer Science

M Naval Postgraduate School

. Monterey, California 93943-5000

s

- 6. Professor Yuh-jeng Lee 1
« Code 52Le

o Department of Computer Science

& Naval Postgraduate School

.? Monterey, California 93343-5000

v 7. LTJG Mufit Can Selek, Turkisn Navy &
P Sogutlu cesme, Elmali cesme sok.

o Huzur apt. Dai: 6

> Kadikoy - Istanbul., Turkey :
b)
N 3. Deniz Harp Okulu Kitapligi 1
g Deniz Harp Okulu Komutanligi

e, Tuzla -~ Istanbul, Turkey

K

L%

Xy

I

- ? (] \J “fa® 3
Y X R R I R R PR R IR UL M B e d ol R e M P P N T M T T ¥ al i a i mt L n 'hs'!\;
E - d

L

-
-

o)
NN

M
Db

T

P

]

St
M~
X
“v
o

PA 2R s JX 8 0]

Y
‘
)
!

O b

A

LT e

1“" AR

OIS CAXN RO

\"\'\"\. \\’\"\ -~ '\"' A DANRRATITS,
2 g -f.‘t"! f XY AR
MN"*‘- N '.‘-\ e
w\".".'-‘- -.-.-.-."".'

-

